Skip to main content

Active Appearance Model-Based Facial Composite Generation with Interactive Nature-Inspired Heuristics

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Abstract

The aim of this study is to automatically generate facial composites in order to match a target face, by using the active appearance model (AAM). The AAM generates a statistical model of the human face from a training set. The model parameters control both the shape and the texture of the face. We propose a system in which a human user interactively tries to optimize the AAM parameters such that the parameters generate the target face. In this study, the optimization problem is handled through using nature-inspired approaches. Experiments with interactive versions of different nature-inspired heuristics are performed. In the interactive versions of these heuristics, users participate in the experiments either by quantifying the solution quality or by selecting the most similar faces. The results of the initial experiments are promising which promote further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E-FIT, New England Press Inc. (2004), http://www.efitforwindows.com

  2. PROfit, ABM UK Ltd., http://www.abm-uk.com/uk/products/profit.asp

  3. Frowd C.D., Hancock P.J.B.: EvoFIT: Facial Composite System for Identifying Suspects to Crime, Department of Psychology, Sterling University

    Google Scholar 

  4. EigenFIT, VisionMetric Ltd., http://www.eigenfit.com

  5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  6. PROfit: A Photofit System using Highly Advanced Facial Composition Tools, ABM United Kingdom Ltd., http://www.abm-uk.com/uk/pdfs/profit.pdf

  7. Frowd, C.D., Hancock, P.J.B., Carson, D.: EvoFIT: A Holistic, Evolutionary Facial Imaging Technique for Creating Composites. ACM TAP 1(1), 1–21 (2004)

    Google Scholar 

  8. Gibson, S.J., Pallares-Bejarano, A., Solomon, C.J.: Synthesis of Photographic Quality Facial Composites using Evolutionary Algorithms. In: Proceedings of the British Machine Vision Conference, pp. 221–230 (2003)

    Google Scholar 

  9. Solomon, C.J., Gibson, S.J., Pallares-Bejarano, A.: EigenFit - The Generation of Photographic Quality Facial Composites. The Journal Of Forensic Science (2005)

    Google Scholar 

  10. Eiben, A.E., Schoenauer, M.: Evolutionary Computing. Information Processing Letters 82(1), 1–6 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Matthews, I., Baker, S.: Active Appearance Models Revisited. International Journal of Computer Vision 60(2), 135–164 (2004)

    Article  Google Scholar 

  12. AAM-API, http://www2.imm.dtu.dk/~aam/aamapi/

  13. Akbal, T., Demir, G.N., Kanlikilicer, A.E., Kus, M.C., Ulu, F.H.: Interactive Nature-Inspired Heuristics for Automatic Facial Composite Generation. In: Genetic and Evolutionary Computation Conference, Undergraduate Student Workshop (July 2006)

    Google Scholar 

  14. Storn R., Price K.: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA (1995)

    Google Scholar 

  15. Beyer, H.G., Schwefel, H.P.: Evolution strategies A comprehensive introduction. Natural Comp. 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eberhart, R.C., Kennedy, J., Shi, Y.: Swarm Intelligence. M. Kaufmann, San Francisco (2001)

    Google Scholar 

  17. Madar, J., Abonyi, J., Szeifert, F.: Interactive Particle Swarm Optimization. In: 5th Int. Conf. on Intelligent Systems Design and Apps (ISDA 2005), pp. 314–319 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurt, B. et al. (2006). Active Appearance Model-Based Facial Composite Generation with Interactive Nature-Inspired Heuristics. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_26

Download citation

  • DOI: https://doi.org/10.1007/11848035_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics