Abstract
The aim of this study is to automatically generate facial composites in order to match a target face, by using the active appearance model (AAM). The AAM generates a statistical model of the human face from a training set. The model parameters control both the shape and the texture of the face. We propose a system in which a human user interactively tries to optimize the AAM parameters such that the parameters generate the target face. In this study, the optimization problem is handled through using nature-inspired approaches. Experiments with interactive versions of different nature-inspired heuristics are performed. In the interactive versions of these heuristics, users participate in the experiments either by quantifying the solution quality or by selecting the most similar faces. The results of the initial experiments are promising which promote further study.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E-FIT, New England Press Inc. (2004), http://www.efitforwindows.com
PROfit, ABM UK Ltd., http://www.abm-uk.com/uk/products/profit.asp
Frowd C.D., Hancock P.J.B.: EvoFIT: Facial Composite System for Identifying Suspects to Crime, Department of Psychology, Sterling University
EigenFIT, VisionMetric Ltd., http://www.eigenfit.com
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
PROfit: A Photofit System using Highly Advanced Facial Composition Tools, ABM United Kingdom Ltd., http://www.abm-uk.com/uk/pdfs/profit.pdf
Frowd, C.D., Hancock, P.J.B., Carson, D.: EvoFIT: A Holistic, Evolutionary Facial Imaging Technique for Creating Composites. ACM TAP 1(1), 1–21 (2004)
Gibson, S.J., Pallares-Bejarano, A., Solomon, C.J.: Synthesis of Photographic Quality Facial Composites using Evolutionary Algorithms. In: Proceedings of the British Machine Vision Conference, pp. 221–230 (2003)
Solomon, C.J., Gibson, S.J., Pallares-Bejarano, A.: EigenFit - The Generation of Photographic Quality Facial Composites. The Journal Of Forensic Science (2005)
Eiben, A.E., Schoenauer, M.: Evolutionary Computing. Information Processing Letters 82(1), 1–6 (2002)
Matthews, I., Baker, S.: Active Appearance Models Revisited. International Journal of Computer Vision 60(2), 135–164 (2004)
AAM-API, http://www2.imm.dtu.dk/~aam/aamapi/
Akbal, T., Demir, G.N., Kanlikilicer, A.E., Kus, M.C., Ulu, F.H.: Interactive Nature-Inspired Heuristics for Automatic Facial Composite Generation. In: Genetic and Evolutionary Computation Conference, Undergraduate Student Workshop (July 2006)
Storn R., Price K.: Differential Evolution - A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA (1995)
Beyer, H.G., Schwefel, H.P.: Evolution strategies A comprehensive introduction. Natural Comp. 1, 3–52 (2002)
Eberhart, R.C., Kennedy, J., Shi, Y.: Swarm Intelligence. M. Kaufmann, San Francisco (2001)
Madar, J., Abonyi, J., Szeifert, F.: Interactive Particle Swarm Optimization. In: 5th Int. Conf. on Intelligent Systems Design and Apps (ISDA 2005), pp. 314–319 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kurt, B. et al. (2006). Active Appearance Model-Based Facial Composite Generation with Interactive Nature-Inspired Heuristics. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_26
Download citation
DOI: https://doi.org/10.1007/11848035_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39392-4
Online ISBN: 978-3-540-39393-1
eBook Packages: Computer ScienceComputer Science (R0)