Skip to main content

Image Quality Measures for Fingerprint Image Enhancement

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4105))

  • 1528 Accesses

Abstract

Fingerprint image quality is an important factor in the performance of Automatic Fingerprint Identification Systems(AFIS). It is used to evaluate the system performance, assess enrollment acceptability, and evaluate fingerprint sensors. This paper presents a novel methodology for fingerprint image quality measurement. We propose limited ring-wedge spectral measure to estimate the global fingerprint image features, and inhomogeneity with directional contrast to estimate local fingerprint image features. Experimental results demonstrate the effectiveness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, Y., Dass, S., Jain, A.: Fingerprint quality indices for predicting authentication performance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 160–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Lim, E., Jiang, X., Yau, W.: Fingerprint quality and validity analysis. In: ICIP, pp. 469–472 (2002)

    Google Scholar 

  3. Shen, L., Kot, A., Koo, W.: Quality measures of fingerprint images. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 266–271. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Tabassi, E., Wilson, C.L.: A new approach to fingerprint image quality. In: ICIP, pp. 37–40 (2005)

    Google Scholar 

  5. Uchida, K.: Image-based approach to fingerprint acceptability assessment. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 294–300. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transaction on Pattern Recognition and Machine Intelligence 20, 777–789 (1998)

    Article  Google Scholar 

  7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  8. Candela, G.T., Grother, P.J., Watson, C.I., Wilkinson, R.A., Wilson, C.L.: Pcasys - a pattern-level classification automation system for fingerprints. Technical Report NISTIR 5647 (1995)

    Google Scholar 

  9. Zuiderveld, K.: Contrast Limited Adaptive Histogram Equalization. Academic Press, London (1994)

    Google Scholar 

  10. Jea, T.Y., Chavan, V.S., Govindaraju, V., Schneider, J.K.: Security and matching of partial fingerprint recognition systems. In: SPIE Defense and Security Symposium (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, C., Tulyakov, S., Govindaraju, V. (2006). Image Quality Measures for Fingerprint Image Enhancement. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_30

Download citation

  • DOI: https://doi.org/10.1007/11848035_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics