Skip to main content

Human Action Classification Using SVM_2K Classifier on Motion Features

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4105))

  • 1538 Accesses

Abstract

In this paper, we study the human action classification problem based on motion features directly extracted from video. In order to implement a fast classification system, we select simple features that can be obtained from non-intensive computation. We also introduce the new SVM_2K classifier that can achieve improved performance over a standard SVM by combining two types of motion feature vector together. After learning, classification can be implemented very quickly because SVM_2K is a linear classifier. Experimental results demonstrate the method to be efficient and may be used in real-time human action classification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73, 428–440 (1999)

    Article  Google Scholar 

  2. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23, 257–267 (2001)

    Article  Google Scholar 

  3. Ogata, T., Tan, J.K., Ishikawa, S.: High-Speed Human Motion Recognition Based on a Motion History Image and an Eigenspace. IEICE Transactions on Information and Systems E89, 281–289 (2006)

    Article  Google Scholar 

  4. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proc. Int. Conf. Pattern Recognition (ICPR 2004), Cambridge, UK (2004)

    Google Scholar 

  5. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Proceedings of International Conference on Computer Vision, Beijing, China, October 15-21, pp. 166–173 (2005)

    Google Scholar 

  6. Weinland, D., Ronfard, R., Boyer, E.: Motion history volumes for free viewpoint action recognition. In: IEEE International Workshop on Modeling People and Human Interaction (PHI 2005) (2005)

    Google Scholar 

  7. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines (and other kernel-based learning methods). Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  9. Wong, S.F., Cipolla, R.: Real-time adaptive hand motion recognition using a sparse bayesian classifier. In: ICCV-HCI, pp. 170–179 (2005)

    Google Scholar 

  10. Wong, S.-F., Cipolla, R.: Real-time interpretation of hand motions using a sparse bayesian classifier on motion gradient orientation images. In: Proceedings of the British Machine Vision Conference, Oxford, UK, vol. 1, pp. 379–388 (2005)

    Google Scholar 

  11. Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.D.R.: Support vector machine to synthesise kernels. In: Winkler, J.R., Niranjan, M., Lawrence, N.D. (eds.) Deterministic and Statistical Methods in Machine Learning. LNCS, vol. 3635, pp. 242–255. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Farquhar, J.D.R., Hardoon, D.R., Meng, H., Shawe-Taylor, J., Szedmak, S.: Two view learning: SVM-2K, Theory and Practice. In: NIPS (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meng, H., Pears, N., Bailey, C. (2006). Human Action Classification Using SVM_2K Classifier on Motion Features. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_61

Download citation

  • DOI: https://doi.org/10.1007/11848035_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics