Skip to main content

Spatial Morphological Covariance Applied to Texture Classification

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4105))

  • 1491 Accesses

Abstract

Morphological covariance, one of the most frequently employed texture analysis tools offered by mathematical morphology, makes use of the sum of pixel values, i.e. “volume” of its input. In this paper, we investigate the potential of alternative measures to volume, and extend the work of Wilkinson (ICPR’02) in order to obtain a new covariance operator, more sensitive to spatial details, namely the spatial covariance. The classification experiments are conducted on the publicly available Outex 14 texture database, where the proposed operator leads not only to higher classification scores than standard covariance, but also to the best results reported so far for this database when combined with an adequate illumination invariance model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    MATH  Google Scholar 

  2. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8, 179–187 (1962)

    Google Scholar 

  4. Wilkinson, M.H.F.: Generalized pattern spectra sensitive to spatial information. In: Proceedings of the 16th ICPR, Quebec City, Canada, vol. 1, pp. 21–24 (2002)

    Google Scholar 

  5. Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recognition 37, 1629–1640 (2004)

    Article  Google Scholar 

  6. Comer, M., Delp, E.: Morphological operations for color image processing. Journal of Eletronic Imaging 8, 279–289 (1999)

    Article  Google Scholar 

  7. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex: New framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th ICPR, Quebec City, Canada, vol. 1, pp. 701–706 (2002)

    Google Scholar 

  8. Hanbury, A., Kandaswamy, U., Adjeroh, D.A.: Illumination-invariant morphological texture classification. In: Ronse, C., Najman, L., Decencière, E. (eds.) Proceedings of the 7th ISMM, Computational Imaging and Vision, vol. 30, pp. 377–386. Springer, Dordrecht (2005)

    Google Scholar 

  9. Finlayson, G.D., Hordley, S., Schaefer, G., Tian, G.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognition 38, 179–190 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aptoula, E., Lefèvre, S. (2006). Spatial Morphological Covariance Applied to Texture Classification. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_69

Download citation

  • DOI: https://doi.org/10.1007/11848035_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics