Skip to main content

An Experimental Study of Index Compression and DAAT Query Processing Methods

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11437))

Included in the following conference series:

  • 2759 Accesses

Abstract

In the last two decades, the IR community has seen numerous advances in top-k query processing and inverted index compression techniques. While newly proposed methods are typically compared against several baselines, these evaluations are often very limited, and we feel that there is no clear overall picture on the best choices of algorithms and compression methods. In this paper, we attempt to address this issue by evaluating a number of state-of-the-art index compression methods and safe disjunctive DAAT query processing algorithms. Our goal is to understand how much index compression performance impacts overall query processing speed, how the choice of query processing algorithm depends on the compression method used, and how performance is impacted by document reordering techniques and the number of results returned, keeping in mind that current search engines typically use sets of hundreds or thousands of candidates for further reranking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ot/ds2i.

  2. 2.

    https://github.com/lemire/FastPFor.

  3. 3.

    https://github.com/andrewtrotman/JASSv2.

  4. 4.

    https://github.com/mpetri/partitioned_ef_ans.

References

  1. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary codes. Inf. Retrieval 8(1), 151–166 (2005)

    Article  Google Scholar 

  2. Anh, V.N., Moffat, A.: Index compression using 64-bit words. Softw. Pract. Exp. 40(2), 131–147 (2010)

    Google Scholar 

  3. Arguello, J., Diaz, F., Lin, J., Trotman, A.: SIGIR 2015 workshop on reproducibility, inexplicability, and generalizability of results. In: 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1147–1148. ACM (2015)

    Google Scholar 

  4. Blanco, R., Barreiro, Á.: Document identifier reassignment through dimensionality reduction. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 375–387. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_27

    Chapter  Google Scholar 

  5. Blandford, D., Blelloch, G.: Index compression through document reordering. In: 2002 Data Compression Conference, pp. 342–351 (2002)

    Google Scholar 

  6. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.: Efficient query evaluation using a two-level retrieval process. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 426–434. ACM (2003)

    Google Scholar 

  7. Callan, J., Hoy, M., Yoo, C., Zhao, L.: Clueweb09 data set (2009). http://lemurproject.org/clueweb09/

  8. Catena, M., Macdonald, C., Ounis, I.: On inverted index compression for search engine efficiency. In: de Rijke, M., et al. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 359–371. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_30

    Chapter  Google Scholar 

  9. Chakrabarti, K., Chaudhuri, S., Ganti, V.: Interval-based pruning for top-k processing over compressed lists. In: Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, pp. 709–720 (2011)

    Google Scholar 

  10. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceedings of the Learning to Rank Challenge, pp. 1–24 (2011)

    Google Scholar 

  11. Chapelle, O., Chang, Y., Liu, T.Y.: Future directions in learning to rank. In: Proceedings of the Learning to Rank Challenge, pp. 91–100 (2011)

    Google Scholar 

  12. Crane, M., Culpepper, J.S., Lin, J., Mackenzie, J., Trotman, A.: A comparison of document-at-a-time and score-at-a-time query evaluation. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 201–210. ACM (2017)

    Google Scholar 

  13. Craswell, N., Fetterly, D., Najork, M., Robertson, S., Yilmaz, E.: Microsoft research at TREC 2009 web and relevance feedback tracks. Technical report, Microsoft Research (2009)

    Google Scholar 

  14. Dean, J.: Challenges in building large-scale information retrieval systems: invited talk. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 1–1. ACM (2009)

    Google Scholar 

  15. Dhulipala, L., Kabiljo, I., Karrer, B., Ottaviano, G., Pupyrev, S., Shalita, A.: Compressing graphs and indexes with recursive graph bisection. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1535–1544 (2016)

    Google Scholar 

  16. Dimopoulos, C., Nepomnyachiy, S., Suel, T.: Optimizing top-k document retrieval strategies for block-max indexes. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining, pp. 113–122. ACM (2013)

    Google Scholar 

  17. Ding, S., Attenberg, J., Suel, T.: Scalable techniques for document identifier assignment in inverted indexes. In: Proceedings of the 19th international conference on World wide web, pp. 311–320. ACM (2010)

    Google Scholar 

  18. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 993-1002. ACM (2011)

    Google Scholar 

  19. Duda, J.: Asymmetric numeral systems as close to capacity low state entropy coders. CoRR abs/1311.2540 (2013)

    Google Scholar 

  20. Elias, P.: Efficient storage and retrieval by content and address of static files. J. ACM 21(2), 246–260 (1974)

    Article  MathSciNet  Google Scholar 

  21. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. Inf. Theory 21(2), 194–203 (1975)

    Article  MathSciNet  Google Scholar 

  22. Fano, R.M.: On the number of bits required to implement an associative memory. Massachusetts Institute of Technology, Project MAC (1971)

    Google Scholar 

  23. Golomb, S.W.: Run-length encodings (corresp.). IEEE Trans. Inf. Theory 12(3), 399–401 (1966)

    Article  Google Scholar 

  24. Hawking, D., Jones, T.: Reordering an index to speed query processing without loss of effectiveness. In: Proceedings of the Seventeenth Australasian Document Computing Symposium, pp. 17-24. ACM (2012)

    Google Scholar 

  25. Kane, A., Tompa, F.W.: Split-lists and initial thresholds for wand-based search. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 877-880. ACM (2018)

    Google Scholar 

  26. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization. Softw. Pract. Exper. 45(1), 1–29 (2015)

    Article  Google Scholar 

  27. Lemire, D., Kurz, N., Rupp, C.: Stream vbyte: faster byte-oriented integer compression. Inf. Process. Lett. 130, 1–6 (2018)

    Article  MathSciNet  Google Scholar 

  28. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)

    Article  Google Scholar 

  29. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank for web search. Inf. Retr. 16(5), 584–628 (2013)

    Article  Google Scholar 

  30. Mallia, A., Ottaviano, G., Porciani, E., Tonellotto, N., Venturini, R.: Faster blockmax WAND with variable-sized blocks. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 625–634. ACM (2017)

    Google Scholar 

  31. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 472–479 (2005)

    Google Scholar 

  32. Moffat, A., Petri, M.: ANS-based index compression. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 677-686. ACM (2017)

    Google Scholar 

  33. Moffat, A., Petri, M.: Index compression using byte-aligned ANS coding and two-dimensional contexts. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 405-413. ACM (2018)

    Google Scholar 

  34. Moffat, A., Stuiver, L.: Binary interpolative coding for effective index compression. Inf. Retr. 3(1), 25–47 (2000)

    Article  Google Scholar 

  35. Ottaviano, G., Venturini, R.: Partitioned elias-fano indexes. In: Proceedings of the 37th international ACM SIGIR conference on Research & Development in Information Retrieval, pp. 273–282. ACM (2014)

    Google Scholar 

  36. Plaisance, J., Kurz, N., Lemire, D.: Vectorized VByte decoding. CoRR abs/1503.07387 (2015)

    Google Scholar 

  37. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: a benchmark collection for research on learning to rank for information retrieval. Inf. Retr. 13(4), 346–374 (2010)

    Article  Google Scholar 

  38. Rice, R., Plaunt, J.: Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun. Technol. 19(6), 889–897 (1971)

    Article  Google Scholar 

  39. Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. J. Am. Soc. Inf. Sci. 27(3), 129–146 (1976)

    Article  Google Scholar 

  40. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression of inverted indexes for fast query evaluation. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 222-229. ACM (2002)

    Google Scholar 

  41. Shieh, W.Y., Chen, T.F., Shann, J.J.J., Chung, C.P.: Inverted file compression through document identifier reassignment. Inf. Process. Manage. 39(1), 117–131 (2003)

    Article  Google Scholar 

  42. Silvestri, F.: Sorting out the document identifier assignment problem. In: Proceedings of the 29th European Conference on IR Research, pp. 101–112 (2007)

    Google Scholar 

  43. Silvestri, F., Orlando, S., Perego, R.: Assigning identifiers to documents to enhance the clustering property of fulltext indexes. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 305-312. ACM (2004)

    Google Scholar 

  44. Stepanov, A.A., Gangolli, A.R., Rose, D.E., Ernst, R.J., Oberoi, P.S.: SIMD-based decoding of posting lists. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 317–326 (2011)

    Google Scholar 

  45. Tonellotto, N., Macdonald, C., Ounis, I.: Effect of different docid orderings on dynamic pruning retrieval strategies. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1179–1180. ACM (2011)

    Google Scholar 

  46. Trotman, A.: Compression, SIMD, and postings lists. In: Proceedings of the 2014 Australasian Document Computing Symposium, pp. 50:50–50:57. ACM (2014)

    Google Scholar 

  47. Trotman, A., Lin, J.: In vacuo and in situ evaluation of SIMD codecs. In: Proceedings of the 21st Australasian Document Computing Symposium, pp. 1–8. ACM (2016)

    Google Scholar 

  48. Turtle, H., Flood, J.: Query evaluation: strategies and optimizations. Inf. Process. Manage. 31(6), 831–850 (1995)

    Article  Google Scholar 

  49. Wang, L., Lin, J., Metzler, D.: Learning to efficiently rank. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 138–145. ACM (2010)

    Google Scholar 

  50. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized document ordering. In: Proceedings of the 18th International Conference on World Wide Web, pp. 401–410. ACM (2009)

    Google Scholar 

  51. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)

    Article  Google Scholar 

  52. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in search engines. In: Proceedings of the 17th International Conference on World Wide Web, pp. 387–396. ACM (2008)

    Google Scholar 

  53. Zhang, M., Kuang, D., Hua, G., Liu, Y., Ma, S.: Is learning to rank effective for web search? In: SIGIR 2009 Workshop: Learning to Rank for Information Retrieval, pp. 641–647 (2009)

    Google Scholar 

  54. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache compression. In: Proceedings of the 22nd International Conference on Data Engineering (2006)

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grant IIS-1718680 and a grant from Amazon.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Mallia , Michał Siedlaczek or Torsten Suel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallia, A., Siedlaczek, M., Suel, T. (2019). An Experimental Study of Index Compression and DAAT Query Processing Methods. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15712-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15711-1

  • Online ISBN: 978-3-030-15712-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics