Abstract
In this paper, we study TRIAD-AE, which is submitted in the on-going NIST Lightweight competition. We first estimate an upper bound of the algebraic degree of internal state and key-stream bit seen as multivariate Boolean polynomials. Using this estimation, we find good cubes to analyze reduced round TRIAD-AE. We get a cube of size 32 which gives zero-sum up to 540 rounds, and a cube of size 34 which can distinguish TRIAD-AE up to 550 rounds with a confidence level around \(95 \%\). Further, we also obtained some small size good cubes which distinguishes TRIAD-AE from a random generator. We believe that our analysis can help to understand the security of the cipher better.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In order to make efficient in low-area implementation its state size is less than that of Trivium (Trivium has 288 bit state size).
References
Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9_1
Banik, S., Isobe, T., Meier, W., Todo, Y., Zhang, B.: TRIAD v1- a lightweight AEAD and hash function based on stream cipher (2018)
Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_16
Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Trivium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_26
Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers onNFSR-based stream ciphers. Des. Codes Crypt. (2019). https://doi.org/10.1007/s10623-019-00674-1
Knellwolf, S., Meier, W.: High order differential attacks on stream ciphers. Cryptogr. Commun. 4(3–4), 203–215 (2012). https://doi.org/10.1007/s12095-012-0071-9
Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_8
Liu, M., Lin, D., Wang, W.: Searching cubes for testing Boolean functions and its application to Trivium. In: IEEE International Symposium on Information Theory, ISIT, pp. 496–500. IEEE (2015). https://doi.org/10.1109/ISIT.2015.7282504
Sarkar, S., Maitra, S., Baksi, A.: Observing biases in the state: case studies with Trivium and Trivia-SC. Des. Codes Crypt. 82(1–2), 351–375 (2017). https://doi.org/10.1007/s10623-016-0211-x
Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kesarwani, A., Sarkar, S., Venkateswarlu, A. (2019). Some Cryptanalytic Results on TRIAD. In: Hao, F., Ruj, S., Sen Gupta, S. (eds) Progress in Cryptology – INDOCRYPT 2019. INDOCRYPT 2019. Lecture Notes in Computer Science(), vol 11898. Springer, Cham. https://doi.org/10.1007/978-3-030-35423-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-35423-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35422-0
Online ISBN: 978-3-030-35423-7
eBook Packages: Computer ScienceComputer Science (R0)