Skip to main content

Anchored Rescheduling Problems Under Generalized Precedence Constraints

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12176))

Included in the following conference series:

Abstract

The anchored rescheduling problem, recently introduced in the literature, is to find a schedule under precedence constraints with a maximum number of prescribed starting times. Namely, prescribed starting times may correspond to a former schedule that must be modified while maintaining a maximum number of starting times unchanged. In the present work two extensions are investigated. First we introduce a new tolerance feature, so that starting times can be considered as unchanged when modified less than a tolerance threshold. The sensitivity of the anchored rescheduling problem to tolerance is studied. Second we consider generalized precedence constraints, which include, e.g., deadline constraints. Altogether this leads to a more realistic rescheduling problem. The main result is to show that the problem is polynomial. We discuss how to benefit from the polynomiality result in a machine scheduling environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendotti, P., Chrétienne, P., Fouilhoux, P., Quilliot, A.: Anchored reactive and proactive solutions to the CPM-scheduling problem. Eur. J. Oper. Res. 261, 67–74 (2017)

    Article  MathSciNet  Google Scholar 

  2. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  3. Herroelen, W., Leus, R.: Robust and reactive project scheduling: a review and classification of procedures, p. 42. Katholieke Universiteit Leuven, Open Access publications from Katholieke Universiteit Leuven, April 2004

    Google Scholar 

  4. Smith, S.F.: Reactive Scheduling Systems. In: Brown, D.E., Scherer, W.T. (eds.) Intelligent Scheduling Systems. Operations Research/Computer Science Interfaces Series, vol. 3, pp. 155–192. Springer, Boston (1995). https://doi.org/10.1007/978-1-4615-2263-8_7

    Chapter  Google Scholar 

  5. Sakkout, H., Wallace, M.: Probe backtrack search for minimal perturbation in dynamic scheduling. Constraints 5, 359–388 (2000)

    Article  MathSciNet  Google Scholar 

  6. Calhoun, K., Deckro, R., Moore, J., Chrissis, J., Hove, J.: Planning and re-planning in project and production scheduling. Omega 30, 155–170 (2002)

    Article  Google Scholar 

  7. Artigues, C., Roubellat, F.: A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes. Eur. J. Oper. Res. 127(2), 297–316 (2000)

    Article  Google Scholar 

  8. Herroelen, W., Leus, R.: Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165, 289–306 (2002)

    Article  Google Scholar 

  9. Herroelen, W., Leus, R.: The construction of stable project baseline schedules. Eur. J. Oper. Res. 156(3), 550–565 (2004)

    Article  MathSciNet  Google Scholar 

  10. Bendotti, P., Chrétienne, P., Fouilhoux, P., Pass-Lanneau, A.: The anchor-robust project scheduling problem, May 2019. https://hal.archives-ouvertes.fr/hal-02144834. Working paper or preprint

  11. Liebchen, C., Lübbecke, M., Möhring, R., Stiller, S.: The concept of recoverable robustness, linear programming recovery, and railway applications. Robust Online Large-Scale Optim. 5868, 1–27 (2009)

    Article  Google Scholar 

  12. D’Angelo, G., Di Stefano, G., Navarra, A., Pinotti, C.: Recoverable robust timetables: an algorithmic approach on trees. IEEE Trans. Comput. 60, 433–446 (2011)

    Article  MathSciNet  Google Scholar 

  13. Schieber, B., Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for combinatorial reoptimization. Algorithmica 80(2), 576–607 (2018)

    Article  MathSciNet  Google Scholar 

  14. Şeref, O., Ahuja, R.K., Orlin, J.B.: Incremental network optimization: theory and algorithms. Oper. Res. 57(3), 586–594 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  16. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  18. Chrétienne, P.: Reactive and proactive single-machine scheduling to maintain a maximum number of starting times. Ann. Oper. Res. 1–14 (2018). https://hal.sorbonne-universite.fr/hal-02078478

  19. Bruni, M., Di Puglia Pugliese, L., Beraldi, P., Guerriero, F.: An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations. Omega 71, 66–84 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adèle Pass-Lanneau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bendotti, P., Chrétienne, P., Fouilhoux, P., Pass-Lanneau, A. (2020). Anchored Rescheduling Problems Under Generalized Precedence Constraints. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2020. Lecture Notes in Computer Science(), vol 12176. Springer, Cham. https://doi.org/10.1007/978-3-030-53262-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53262-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53261-1

  • Online ISBN: 978-3-030-53262-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics