Skip to main content

Computer Graphics Rendering Survey: From Rasterization and Ray Tracing to Deep Learning

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 419))

Abstract

In this article we present a survey of the different techniques of rendering of 3D computer generated images. We start with the principles and advances of the traditional methods of rasterization and ray tracing. Then, we discover the new techniques based on deep learning, which are now part of a new discipline of computer graphics called neural rendering, allowing the synthesis and rendering of 3D images, thanks to generative adversarial network and variational auto encoder models. Finally, we compare theses approaches according to different criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  2. Eslami, S.A., et al.: Neural scene representation and rendering. Science 360(6394), 1204–1210 (2018)

    Article  Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  4. Gordon, V.S., Clevenger, J.L.: Computer Graphics Programming in OpenGL with C++. Stylus Publishing, LLC (2020)

    Google Scholar 

  5. Haines, E., Akenine-Möller, T.: Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. Apress (2019)

    Google Scholar 

  6. Halmaoui, H., Haqiq, A.: Matchmoving previsualization based on artificial marker detection. In: International Conference on Advanced Intelligent Systems and Informatics, pp. 79–89. Springer (2020)

    Google Scholar 

  7. Kanamori, Y., Endo, Y.: Relighting humans: occlusion-aware inverse rendering for full-body human images. arXiv preprint arXiv:1908.02714 (2019)

  8. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  9. Kessenich, J., Sellers, G., Shreiner, D.: OpenGL Programming Guide: The Official Guide to learning OpenGL, version 4.5. Addison-Wesley Professional, Boston (2016)

    Google Scholar 

  10. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Article  Google Scholar 

  11. Koujan, M.R., Doukas, M.C., Roussos, A., Zafeiriou, S.: Head2head: video-based neural head synthesis. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 16–23. IEEE (2020)

    Google Scholar 

  12. Lee, M., Seok, J.: Controllable generative adversarial network. IEEE Access 7, 28158–28169 (2019)

    Google Scholar 

  13. Liu, N., Pang, M.Y.: A survey of shadow rendering algorithms: projection shadows and shadow volumes. In: 2009 Second International Workshop on Computer Science and Engineering. vol. 1, pp. 488–492. IEEE (2009)

    Google Scholar 

  14. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: Learning dynamic renderable volumes from images. arXiv preprint arXiv:1906.07751 (2019)

  15. Marschner, S., Shirley, P.: Fundamentals of Computer Graphics. CRC Press, New York (2018)

    Google Scholar 

  16. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  17. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Francisco (2016)

    Google Scholar 

  18. Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. ACM Trans. Graph. 38, 1–14 (2019)

    Article  Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. preprint arXiv:1511.06434 (2015)

  20. Ren, P., Dong, Y., Lin, S., Tong, X., Guo, B.: Image based relighting using neural networks. ACM Trans. Graph. (ToG) 34(4), 1–12 (2015)

    Article  Google Scholar 

  21. Segal, M., Akeley, K.: The Opengl Graphics System: A Specification. version 4.6, core profile. The Khronos Group Inc., 2006-2018 (2020)

    Google Scholar 

  22. Sellers, G., Wright Jr, R.S., Haemel, N.: OpenGL superBible: comprehensive tutorial and reference. Addison-Wesley (2013)

    Google Scholar 

  23. Shirley, P.: Ray Tracing in One Weekend. Amazon Digital Services LLC 1, Seattle (2016)

    Google Scholar 

  24. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: learning persistent 3d feature embeddings. In: Proceedings of the IEEE/CVF CVPR, pp. 2437–2446 (2019)

    Google Scholar 

  25. Sun, T., et al.: Single image portrait relighting. ACM Trans. Graph. 38(4), 1–12 (2019)

    Article  Google Scholar 

  26. Tewari, A., et al.: State of the art on neural rendering. Comput. Graph. Forum 39, 701–727 (2020)

    Google Scholar 

  27. Wang, J., Dong, Y., Tong, X., Lin, Z., Guo, B.: Kernel nyström method for light transport. In: ACM SIGGRAPH 2009 Papers, pp. 1–10 (2009)

    Google Scholar 

  28. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  29. Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. 37(4), 1–13 (2018)

    Article  Google Scholar 

  30. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssam Halmaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halmaoui, H., Haqiq, A. (2022). Computer Graphics Rendering Survey: From Rasterization and Ray Tracing to Deep Learning. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_51

Download citation

Publish with us

Policies and ethics