Abstract
In this paper, we introduce two variants of the submodular vertex cover problem, namely, the submodular vertex cover problems with linear and submodular penalties, for which we present two primal-dual approximation algorithms with approximation ratios of 2 and 4, respectively. Implementing the primal-dual framework directly on the dual programs of the linear program relaxations for these two variants cannot guarantee the dual ascending process terminates in polynomial time. To overcome this difficulty, we relax the two dual programs to slightly weaker versions which lead to two primal-dual approximation algorithms with the aforeclaimed approximation ratios.
An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-319-08783-2_61
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bshouty, N., Burroughs, L.: Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)
Bar-Yehuda, R., Even, S.: A Linear-Time Approximation Algorithm for the Weighted Vertex Cover. J. Algorithms 2, 198–203 (1981)
Bar-Yehuda, R., Even, S.: A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem. Ann. Discrete Math. 25, 27–46 (1985)
Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter Theorem to Generalized Vertex Cover with Applications. SIAM J. Discrete Math. 24, 287–300 (2010)
Bar-Yehuda, R., Rawitz, D.: On the Equivalence between the Primal-Dual Schema and the Local Technique. SIAM J. Discrete Math. 19, 762–797 (2005)
Bienstock, D., Goemans, M., Simchi-Levi, D., Williamson, D.: A Note on the Prize Collecting Traveling Salesman Problem. Math. Program. 59, 413–420 (1993)
Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for Facility Location Problems with Outliers. In: 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651. SIAM Press, Washington SC (2001)
Du, D., Lu, R., Xu, D.: A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties. Algorithmica 63, 191–200 (2012)
Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. In: Guy, R., Hanam, H., Sauer, N., Schonheim, J. (eds.) Combinatorial Structures and Their Applications (Proc. 1969 Calgary Conference), pp. 69–87. Gordon and Breach, New York (1970)
Fleischer, L., Iwata, S.: A Push-Relabel Framework for Submodular Function Minimization and Applications to Parametric Optimization. Discrete Appl. Math. 131, 311–322 (2003)
Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)
Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated Vertex Covering. J. Algorithms 48, 257–270 (2003)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)
Goemans, M.X., Williamson, D.P.: A General Approximation Technique for Constrained Forest Problems. SIAM J. Comput. 24, 296–317 (1995)
Halperin, E.: Improved Approximation Algorithms for the Vertex Cover Problem in Graphs and Hypergraphs. SIAM J. Comput. 31, 1608–1623 (2002)
Hochbaum, D.S.: Approximation Algorithms for the Set Covering and Vertex Cover Problems. SIAM J. Comput. 11, 555–556 (1982)
Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston (1997)
Hochbaum, D.S.: Solving Integer Programs over Monotone Inequalities in Three Variables: a Framework of Half Integrality and Good Approximations. Eur. J. Oper. Res. 140, 291–321 (2002)
Iwata, S., Fleischer, L., Fujishige, S.: A Combinatorial Strongly Polynomial Algorithm for Minimizing Submodular Functions. J. ACM 48, 761–777 (2001)
Iwata, S., Nagano, K.: Submodular Function Minimization under Covering Constraints. In: 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 671–680. IEEE Press, Atlanta (2009)
Karakostas, G.: A Better Approximation Ratio for the Vertex Cover Problem. ACM Trans. on Algorithms 5, Article No. 41 (2009)
Khot, S., Regev, O.: Vertex Cover Might Be Hard to Approxmate to with 2 − ε. J. Comput. Syst. Sci. 74, 335–349 (2008)
Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, US (1972)
Li, Y., Du, D., Xiu, N., Xu, D.: Improved Approximation Algorithms for the Facility Location Problems with Linear/submodular Penalty. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 292–303. Springer, Heidelberg (2013)
Lovász, L.: Submodular Functions and Convexity. In: Bachem, A., Grtschel, M., Korte, B. (eds.) Mathematical Programming The State of the Art, pp. 235–257. Springer, Heidelberg (1983)
Schrijver, A.: A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time. J. Comb. Theory B 80, 346–355 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Xu, D., Wang, F., Du, D., Wu, C. (2014). Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)