Skip to main content

Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

In this paper, we introduce two variants of the submodular vertex cover problem, namely, the submodular vertex cover problems with linear and submodular penalties, for which we present two primal-dual approximation algorithms with approximation ratios of 2 and 4, respectively. Implementing the primal-dual framework directly on the dual programs of the linear program relaxations for these two variants cannot guarantee the dual ascending process terminates in polynomial time. To overcome this difficulty, we relax the two dual programs to slightly weaker versions which lead to two primal-dual approximation algorithms with the aforeclaimed approximation ratios.

An Erratum for this chapter can be found at http://dx.doi.org/10.1007/978-3-319-08783-2_61

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bshouty, N., Burroughs, L.: Massaging a Linear Programming Solution to Give a 2-Approximation for a Generalization of the Vertex Cover Problem. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 298–308. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Bar-Yehuda, R., Even, S.: A Linear-Time Approximation Algorithm for the Weighted Vertex Cover. J. Algorithms 2, 198–203 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R., Even, S.: A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem. Ann. Discrete Math. 25, 27–46 (1985)

    MathSciNet  Google Scholar 

  4. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter Theorem to Generalized Vertex Cover with Applications. SIAM J. Discrete Math. 24, 287–300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bar-Yehuda, R., Rawitz, D.: On the Equivalence between the Primal-Dual Schema and the Local Technique. SIAM J. Discrete Math. 19, 762–797 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bienstock, D., Goemans, M., Simchi-Levi, D., Williamson, D.: A Note on the Prize Collecting Traveling Salesman Problem. Math. Program. 59, 413–420 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charikar, M., Khuller, S., Mount, D., Narasimhan, G.: Algorithms for Facility Location Problems with Outliers. In: 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 642–651. SIAM Press, Washington SC (2001)

    Google Scholar 

  8. Du, D., Lu, R., Xu, D.: A Primal-Dual Approximation Algorithm for the Facility Location Problem with Submodular Penalties. Algorithmica 63, 191–200 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. In: Guy, R., Hanam, H., Sauer, N., Schonheim, J. (eds.) Combinatorial Structures and Their Applications (Proc. 1969 Calgary Conference), pp. 69–87. Gordon and Breach, New York (1970)

    Google Scholar 

  10. Fleischer, L., Iwata, S.: A Push-Relabel Framework for Submodular Function Minimization and Applications to Parametric Optimization. Discrete Appl. Math. 131, 311–322 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  12. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated Vertex Covering. J. Algorithms 48, 257–270 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  14. Goemans, M.X., Williamson, D.P.: A General Approximation Technique for Constrained Forest Problems. SIAM J. Comput. 24, 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Halperin, E.: Improved Approximation Algorithms for the Vertex Cover Problem in Graphs and Hypergraphs. SIAM J. Comput. 31, 1608–1623 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hochbaum, D.S.: Approximation Algorithms for the Set Covering and Vertex Cover Problems. SIAM J. Comput. 11, 555–556 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston (1997)

    Google Scholar 

  18. Hochbaum, D.S.: Solving Integer Programs over Monotone Inequalities in Three Variables: a Framework of Half Integrality and Good Approximations. Eur. J. Oper. Res. 140, 291–321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iwata, S., Fleischer, L., Fujishige, S.: A Combinatorial Strongly Polynomial Algorithm for Minimizing Submodular Functions. J. ACM 48, 761–777 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Iwata, S., Nagano, K.: Submodular Function Minimization under Covering Constraints. In: 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 671–680. IEEE Press, Atlanta (2009)

    Google Scholar 

  21. Karakostas, G.: A Better Approximation Ratio for the Vertex Cover Problem. ACM Trans. on Algorithms 5, Article No. 41 (2009)

    Google Scholar 

  22. Khot, S., Regev, O.: Vertex Cover Might Be Hard to Approxmate to with 2 − ε. J. Comput. Syst. Sci. 74, 335–349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, US (1972)

    Google Scholar 

  24. Li, Y., Du, D., Xiu, N., Xu, D.: Improved Approximation Algorithms for the Facility Location Problems with Linear/submodular Penalty. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 292–303. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Lovász, L.: Submodular Functions and Convexity. In: Bachem, A., Grtschel, M., Korte, B. (eds.) Mathematical Programming The State of the Art, pp. 235–257. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

  26. Schrijver, A.: A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time. J. Comb. Theory B 80, 346–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, D., Wang, F., Du, D., Wu, C. (2014). Primal-Dual Approximation Algorithms for Submodular Vertex Cover Problems with Linear/Submodular Penalties. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics