Skip to main content

Improved Approximation for Time-Dependent Shortest Paths

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

We study the approximation of minimum travel time paths in time dependent networks. The travel time on each link of the network is a piecewise linear function of the departure time from the start node of the link. The objective is to find the minimum travel time to a destination node d, for all possible departure times at source node s. Dehne et al. proposed an exact output-sensitive algorithm for this problem [6, 7] that improves, in most cases, upon the existing algorithms. They also provide an approximation algorithm. In [10, 11], Foschini et al. show that this problem has super-polynomial complexity and present an ε–approximation algorithm that runs \(O( {\lambda \over \epsilon} \log ({T_{max} \over T_{min}}) \log({L \over \lambda \epsilon T_{min}}))\) shortest path computations, where λ is the total number of linear pieces in travel time functions on links, L is the horizontal span of the travel time function and T min and T max are the minimum and maximum travel time values, respectively.

In this paper, we present two ε–approximation algorithms that improve upon Foschini et al.’s result. Our first algorithm runs \(O({\lambda \over \epsilon}(\log ({T_{max}\over T_{min}})+ \log ({ L\over \lambda T_{min}})))\) shortest path computations at fixed departure times. In our second algorithm, we reduce the dependency on L, by using only \(O(\lambda( {1 \over \epsilon} \log ({T_{max} \over T_{min}})+ \log ({ L \over \lambda \epsilon T_{min}})))\) total shortest path computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: A simple and fast label correcting algorithm for shortest paths. Networks 23(7), 703–709 (1993)

    Article  MATH  Google Scholar 

  2. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. Electronic Notes in Theoretical Computer Science 92, 3–15 (2004)

    Article  Google Scholar 

  3. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. Journal of Mathematical Analysis and Applications 14(3), 493–498 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daganzo, C.F.: Reversibility of the time-dependent shortest path problem. Transportation Research 36(7), 665–668 (2002)

    Article  Google Scholar 

  5. Dean, B.C.: Shortest paths in FIFO time-dependent networks: Theory and algorithms. Technical report, MIT Department of Computer Science (2004)

    Google Scholar 

  6. Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent FIFO networks using edge load forecasts. In: Proceedings of the 2nd International Workshop on Computational Transportation Science, pp. 1–6 (2009)

    Google Scholar 

  7. Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent FIFO networks. Algorithmica 62(1-2), 416–435 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT 2008, pp. 205–216 (2008)

    Google Scholar 

  10. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 327–341 (2011)

    Google Scholar 

  11. Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica, 1–23 (2012)

    Google Scholar 

  12. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  13. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: Proceedings of the 22nd International Conference on Data Engineering, p. 10 (2006)

    Google Scholar 

  14. Kontogiannis, S.C., Zaroliagis, C.D.: Distance oracles for time-dependent networks. CoRR, abs/1309.4973 (2013)

    Google Scholar 

  15. Nachtigall, K.: Time depending shortest-path problems with applications to railway networks. European Journal of Operational Research 83(1), 154–166 (1995)

    Article  MATH  Google Scholar 

  16. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21, 295–319 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Omran, M., Sack, JR. (2014). Improved Approximation for Time-Dependent Shortest Paths. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics