Skip to main content

Decomposition Descent Method for Limit Optimization Problems

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10556))

Included in the following conference series:

  • 1060 Accesses

Abstract

We consider a general limit optimization problem whose goal function need not be smooth in general and only approximation sequences are known instead of exact values of this function. We suggest to apply a two-level approach where approximate solutions of a sequence of mixed variational inequality problems are inserted in the iterative scheme of a selective decomposition descent method. Its convergence is attained under coercivity type conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining Know. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  2. Cevher, V., Becker, S., Schmidt, M.: Convex optimization for big data. Signal Process. Magaz. 31, 32–43 (2014)

    Article  Google Scholar 

  3. Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimization. IEEE Trans. Sig. Process. 63, 1874–1889 (2015)

    Article  MathSciNet  Google Scholar 

  4. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Progr. 117, 387–423 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Richtárik, P., Takáč, M.: Parallel coordinate descent methods for big data optimization. Math. Program. 156, 433–484 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  6. Konnov, I.V.: Sequential threshold control in descent splitting methods for decomposable optimization problems. Optim. Meth. Softw. 30, 1238–1254 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alart, P., Lemaire, B.: Penalization in non-classical convex programming via variational convergence. Math. Program. 51, 307–331 (1991)

    Article  MATH  Google Scholar 

  8. Cominetti, R.: Coupling the proximal point algorithm with approximation methods. J. Optim. Theor. Appl. 95, 581–600 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Salmon, G., Nguyen, V.H., Strodiot, J.J.: Coupling the auxiliary problem principle and epiconvergence theory for solving general variational inequalities. J. Optim. Theor. Appl. 104, 629–657 (2000)

    Article  MATH  Google Scholar 

  10. Konnov, I.V.: An inexact penalty method for non stationary generalized variational inequalities. Set-Valued Variat. Anal. 23, 239–248 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Ermoliev, Y.M., Norkin, V.I., Wets, R.J.B.: The minimization of semicontinuous functions: mollifier subgradient. SIAM J. Contr. Optim. 33, 149–167 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Czarnecki, M.-O., Rifford, L.: Approximation and regularization of lipschitz functions: convergence of the gradients. Trans. Amer. Math. Soc. 358, 4467–4520 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gwinner, J.: On the penalty method for constrained variational inequalities. In: Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, pp. 197–211. Marcel Dekker, New York (1981)

    Google Scholar 

  15. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63, 127–149 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  MATH  Google Scholar 

  17. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B. 58, 267–288 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The results of this work were obtained within the state assignment of the Ministry of Science and Education of Russia, project No. 1.460.2016/1.4. In this work, the author was also supported by Russian Foundation for Basic Research, project No. 16-01-00109 and by grant No. 297689 from Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Konnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Konnov, I. (2017). Decomposition Descent Method for Limit Optimization Problems. In: Battiti, R., Kvasov, D., Sergeyev, Y. (eds) Learning and Intelligent Optimization. LION 2017. Lecture Notes in Computer Science(), vol 10556. Springer, Cham. https://doi.org/10.1007/978-3-319-69404-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69404-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69403-0

  • Online ISBN: 978-3-319-69404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics