Skip to main content

Watershed Segmentation Via Case-Based Reasoning

  • Conference paper
Advances in Brain, Vision, and Artificial Intelligence (BVAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Included in the following conference series:

  • 1514 Accesses

Abstract

This paper proposes a novel grey-level image segmentation scheme employing case-based reasoning. Segmentation is accomplished by using the watershed transformation, which provides a partition of the image into regions whose contours closely fit those perceived by human users. Case-based reasoning is used to select the segmentation parameters involved in the segmentation algorithm by taking into account the features characterizing the current image. Preliminarily, a number of images are analyzed and the parameters producing the best segmentation for each image, found empirically, are recorded. These images are grouped to form relevant cases, where each case includes all images having similar image features, under the assumption that the same segmentation parameters will produce similarly good segmentation results for all images in the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  2. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annual Review of Biomedical Engineering 2, 315–337 (2000)

    Article  Google Scholar 

  3. Lucchese, L., Mitra, S.K.: Color Image Segmentation: A State-of-the-Art Survey. In: Image Processing, Vision, and Pattern Recognition. Proc. of the Indian National Science Academy (INSA-A), New Delhi, India, vol. 67 A(2), pp. 207–221 (2001)

    Google Scholar 

  4. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)

    Article  MATH  Google Scholar 

  5. Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet Another Survey on Image Segmentation: Region and Boundary Information Integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France (1979)

    Google Scholar 

  7. Beucher, S., Meyer, F.: The morphological approach of segmentation: the watershed transformation. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, Marcel Dekker, New York, pp. 433–481 (1993)

    Google Scholar 

  8. Perner, P.: An Architecture for a CBR Image Segmentation System. Journal on Engineering Application in Artificial Intelligence 12(6), 749–759 (1999)

    Article  Google Scholar 

  9. Perner, P.: CBR Ultra Sonic Image Interpretation. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 479–481. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Perner, P.: Are case-based reasoning and dissimilarity-based classification two sides of the same coin? Journal Engineering Applications of Artificial Intelligence 15(3), 205–216 (2002)

    Article  Google Scholar 

  11. Perner, P., Perner, H., Müller, B.: Similarity Guided Learning of the Case Description and Improvement of the System Performance in an Image Classification System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 604–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Frucci, M.: Oversegmentation Reduction by Flooding Regions and Digging Watershed Lines. International Journal of Pattern Recognition and Artificial Intelligence 20(1), 15–38 (2006)

    Article  Google Scholar 

  13. Frucci, M., Arcelli, C., Sanniti di Baja, G.: Detecting and ranking foreground regions in gray-level images. In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 406–415. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Zamperoni, P., Starovoitov, V.: How dissimilar are two gray-scale images. In: Proceedings of the 17th DAGM Symposium, pp. 448–455. Springer, Heidelberg (1995)

    Google Scholar 

  15. Wilson, D.L., Baddeley, A.J., Owens, R.A.: A new metric for grey-scale image comparision. International Journal of Computer Vision 24(1), 1–29 (1997)

    Article  Google Scholar 

  16. Dreyer, H., Sauer, W.: Prozeßanalyse. Verlag Technik, Berlin (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frucci, M., Perner, P., di Baja, G.S. (2007). Watershed Segmentation Via Case-Based Reasoning. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics