Abstract
In order to develop artificial agents operating in complex ever-changing environments, advanced technical memory systems are required. At this juncture, two central questions are which information needs to be stored and how it is represented. On the other hand, cognitive psychology provides methods to measure the structure of mental representations in humans. But the nature and the characteristics of the underlying representations are largely unknown. We propose to use feature selection methods to determine adequate technical features for approximating the structure of mental representations found in humans. Although this approach does not allow for drawing conclusions transferable to humans, it constitutes an excellent basis for creating technical equivalents of mental representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kawamura, K., Gordon, S.M., Ratanaswasd, P., Erdemir, E., Hall, J.F.: Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics 5(4), 547–586 (2008)
Ben Amor, H., Ikemoto, S., Minato, T., Jung, B., Ishiguro, H.: A Neural Framework for Robot Motor Learning Based on Memory Consolidation. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 641–648. Springer, Heidelberg (2007)
Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Networks 22(5-6), 568–578 (2009)
Goldstone, R.L., Kersten, A.: Concepts and categorization. In: Healy, A.F., Proctor, R.W. (eds.) Handbook of Psychology, vol. 4: Experimental Psychology, pp. 599–621. John Wiley & Sons, Hoboken (2003)
Edelman, S., Intrator, N.: Learning as extraction of low-dimensional representations. In: Goldstone, R.L., Schyns, P.G., Medin, D.L. (eds.) Perceptual Learning, pp. 353–380. Academic Press, San Diego (1997)
Johansen, M.K., Kruschke, J.K.: Category representation for classification and feature inference. Journal of Experimental Psychology 31(6), 1433–1458 (2005)
Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)
Lander, H.J., Lange, K.: Untersuchungen zur Struktur- und Dimensionsanalyse begrifflich repräsentierten Wissens. Zeitschrift für Psychologie 204, 55–74 (1996)
Bläsing, B., Tenenbaum, G., Schack, T.: The cognitive structure of movements in classical dance. Psychology of Sport and Exercise 10, 350–360 (2009)
Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)
Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Ph.D. thesis, Department of Computer Science, The University of Waikato, Hamilton, New Zealand (1999)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)
Yu, L., Chen, H., Wang, S., Lai, K.K.: Evolving least squares support vector machines for stock market trend mining. IEEE Transactions on Evolutionary Computation 13(1), 87–102 (2009)
Kononenko, I., Šikonja, M.R.: Non-myopic feature quality evaluation with (R)ReliefF. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 169–191. Chapman and Hall, Boca Raton (2008)
Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12, 1207–1245 (2000)
Fogel, D.B.: Evolutionary Computation, 3rd edn. IEEE Press, Piscataway (2006)
Engelbrecht, A.P.: Computational Intelligence, 2nd edn. John Wiley & Sons, Hoboken (2007)
Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tscherepanow, M., Kortkamp, M., Kühnel, S., Helbach, J., Schütz, C., Schack, T. (2011). A Feature Selection Approach for Emulating the Structure of Mental Representations. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-24965-5_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24964-8
Online ISBN: 978-3-642-24965-5
eBook Packages: Computer ScienceComputer Science (R0)