Skip to main content

A Feature Selection Approach for Emulating the Structure of Mental Representations

  • Conference paper
Neural Information Processing (ICONIP 2011)

Abstract

In order to develop artificial agents operating in complex ever-changing environments, advanced technical memory systems are required. At this juncture, two central questions are which information needs to be stored and how it is represented. On the other hand, cognitive psychology provides methods to measure the structure of mental representations in humans. But the nature and the characteristics of the underlying representations are largely unknown. We propose to use feature selection methods to determine adequate technical features for approximating the structure of mental representations found in humans. Although this approach does not allow for drawing conclusions transferable to humans, it constitutes an excellent basis for creating technical equivalents of mental representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kawamura, K., Gordon, S.M., Ratanaswasd, P., Erdemir, E., Hall, J.F.: Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics 5(4), 547–586 (2008)

    Article  Google Scholar 

  2. Ben Amor, H., Ikemoto, S., Minato, T., Jung, B., Ishiguro, H.: A Neural Framework for Robot Motor Learning Based on Memory Consolidation. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 641–648. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Chartier, S., Giguère, G., Langlois, D.: A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties. Neural Networks 22(5-6), 568–578 (2009)

    Article  Google Scholar 

  4. Goldstone, R.L., Kersten, A.: Concepts and categorization. In: Healy, A.F., Proctor, R.W. (eds.) Handbook of Psychology, vol. 4: Experimental Psychology, pp. 599–621. John Wiley & Sons, Hoboken (2003)

    Google Scholar 

  5. Edelman, S., Intrator, N.: Learning as extraction of low-dimensional representations. In: Goldstone, R.L., Schyns, P.G., Medin, D.L. (eds.) Perceptual Learning, pp. 353–380. Academic Press, San Diego (1997)

    Chapter  Google Scholar 

  6. Johansen, M.K., Kruschke, J.K.: Category representation for classification and feature inference. Journal of Experimental Psychology 31(6), 1433–1458 (2005)

    Google Scholar 

  7. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  8. Lander, H.J., Lange, K.: Untersuchungen zur Struktur- und Dimensionsanalyse begrifflich repräsentierten Wissens. Zeitschrift für Psychologie 204, 55–74 (1996)

    Google Scholar 

  9. Bläsing, B., Tenenbaum, G., Schack, T.: The cognitive structure of movements in classical dance. Psychology of Sport and Exercise 10, 350–360 (2009)

    Article  Google Scholar 

  10. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)

    Article  Google Scholar 

  11. Hall, M.A.: Correlation-based Feature Selection for Machine Learning. Ph.D. thesis, Department of Computer Science, The University of Waikato, Hamilton, New Zealand (1999)

    Google Scholar 

  12. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  13. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  14. Yu, L., Chen, H., Wang, S., Lai, K.K.: Evolving least squares support vector machines for stock market trend mining. IEEE Transactions on Evolutionary Computation 13(1), 87–102 (2009)

    Article  Google Scholar 

  15. Kononenko, I., Šikonja, M.R.: Non-myopic feature quality evaluation with (R)ReliefF. In: Liu, H., Motoda, H. (eds.) Computational Methods of Feature Selection, pp. 169–191. Chapman and Hall, Boca Raton (2008)

    Google Scholar 

  16. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12, 1207–1245 (2000)

    Article  Google Scholar 

  17. Fogel, D.B.: Evolutionary Computation, 3rd edn. IEEE Press, Piscataway (2006)

    MATH  Google Scholar 

  18. Engelbrecht, A.P.: Computational Intelligence, 2nd edn. John Wiley & Sons, Hoboken (2007)

    Book  Google Scholar 

  19. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tscherepanow, M., Kortkamp, M., Kühnel, S., Helbach, J., Schütz, C., Schack, T. (2011). A Feature Selection Approach for Emulating the Structure of Mental Representations. In: Lu, BL., Zhang, L., Kwok, J. (eds) Neural Information Processing. ICONIP 2011. Lecture Notes in Computer Science, vol 7064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24965-5_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24965-5_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24964-8

  • Online ISBN: 978-3-642-24965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics