Abstract
This paper is devoted to necessary optimality conditions in a mathematical programming problem without differentiability or convexity assumptions on the data. The main tool of this study is the concept of generalized gradient of a locally Lipschitz function (and more generally of a lower semi-continuous function). In the first part, we consider local extremization problems in the unconstrained case for objective functions taking values in (−∞, +∞]. In the second part, the constrained case is considered by the way of the cone of adherent displacements. In the presence of inequality constraints, we derive in the third part optimality conditions in the Kuhn—Tucker form under a constraint qualification.
Similar content being viewed by others
References
M.S. Bazaraa, J.J. Goode and Z. Nashed, “On the cones of tangents with applications to mathematical programming”,Journal of Optimization Theory and Applications 13 (4) (1974) 389–426.
F.H. Clarke, “Necessary conditions for nonsmooth problems in optimal control and the calculus of variations”, Ph.D. Thesis, University of Washington (1973).
F.H. Clarke, “Generalized gradients and applications”,Transactions of the American Mathematical Society 205 (1975) 247–262.
F.H. Clarke, “A new approach to Lagrange multipliers”,Mathematics of Operations Research 1 (1976) 165–174.
A.V. Fiacco and G.P. McCormick,Nonlinear programming: sequential unconstrained minimization techniques (Wiley, New York, 1968).
I.V. Girsanov,Lectures on mathematical theory of extremum problems, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 1972).
F.J. Gould and J.W. Tolle, “A necessary and sufficient qualification for constrained optimization”,SIAM Journal on Applied Mathematics 20 (2) (1971) 164–172.
M. Guignard, “Generalized Kuhn—Tucker conditions for mathematical programming problems in a Banach space”,SIAM Journal on Control 7 (2) (1969) 232–241.
J.B. Hiriart-Urruty, “Conditions nécessaires d'optimalité en programmation non différentiable”,Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Séries A, 283 (1976) 843–845.
J.B. Hiriart-Urruty, “Conditions nécessaires d'optimalité en programmation non différentiable”, Séminaire d'Analyse Numérique, Université de Clermont II (1976).
P.J. Laurent,Approximation et optimisation (Hermann, Paris, 1972).
O.L. Mangasarian and S. Fromowitz, “The Fritz—John necessary optimality conditions in the presence of equality and inequality constraints”,Journal of Mathematical Analysis and Applications 17 (1967) 37–47.
J.P. Penot, “Calcul sous-différentiel et optimisation”, Publications mathématiques de l'Université de Pau (1974).
R.T. Rockafellar,Convex analysis, (Princeton University Press, Princeton, 1970).
R.T. Rockafellar, “Lagrange multipliers in optimization”, in: R.W. Cottle and C.E. Lemke, eds.,SIAM-AMS proceedings, Vol IX (1976) pp. 145–168.
N.Z. Shor, “A class of almost-differentiable functions and a minimization method for functions of this class”,Cybernetics 8 (4) (1974) 509–606.
P.P. Varaiya, “Nonlinear programming in Banach space”,SIAM Journal on Applied Mathematics 15 (2) (1967) 284–293.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hiriart-Urruty, J.B. On optimality conditions in nondifferentiable programming. Mathematical Programming 14, 73–86 (1978). https://doi.org/10.1007/BF01588951
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01588951