Abstract
Second order characterizations for (strictly) pseudoconvex functions are derived in terms of extended Hessians and bordered determinants. Additional results are presented for quadratic functions.
Similar content being viewed by others
References
K.J. Arrow and A.D. Enthoven, “Quasi-concave programming”,Econometrica 29 (1961) 779–800.
M. Avriel, “r-convex functions”,Mathematical Programming 2 (1972) 309–323.
M. Avriel, “Solution of certain nonlinear programs involvingr-convex functions”,Journal of Optimization Theory and Applications 11 (1973) 159–174.
M. Avriel,Nonlinear programming: analysis and methods”, (Prentice Hall, Englewood Cliffs, NJ, 1976).
M. Avriel and I. Zang, “Generalized convex functions with applications to nonlinear programming”, in: P. van Moeseke, ed.,Mathematical programs for activity analysis (North-Holland, Amsterdam, 1974) pp. 23–33.
V.J. Bowman and T.C. Gleason, “A note on second order conditions for pseudo-convexity”, Working paper 44-74-75, Graduate School of Industrial Administration, Carnegie-Mellon University (May 1975).
R.W. Cottle, “Manifestation of the Schur complement”,Linear Algebra and its Applications 8 (1974) 189–211.
R.W. Cottle and J.A. Ferland, “On pseudo-convex functions of nonnegative variables”,Mathematical Programming 1 (1971) 95–101.
R.W. Cottle and J.A. Ferland, “Matrix-theoretic criteria for the quasi-convexity and pseudoconvexity of quadratic functions”,Linear Algebra and its Applications 5 (1972) 123–136.
J.A. Ferland, “Quasi-convex and pseudo-convex functions on solid convex sets”, Tech. Rept. 71-4, Operations Research House, Stanford University (April 1971).
J.A. Ferland, “Maximal domains of quasi-convexity and pseudoconvexity for quadratic functions”,Mathematical Programming 3 (1972) 178–192.
J.A. Ferland, “Mathematical programming problems with quasi-convex objective functions”,Mathematical Programming 3 (1972) 296–301.
A.V. Fiacco, “Second order sufficient conditions for weak and strict constrained minima”,SIAM Journal on Applied Mathematics 16 (1968) 105–108.
F.R. Gantmacher,The Theory of Matrices, Vol. I (Chelsea, New York, 1960).
O.L. Mangasarian, “Pseudo-convex functions”,SIAM Journal on Control 3 (1965) 281–290.
O.L. Mangasarian,Nonlinear programming, (McGraw-Hill, New York, 1969).
B. Martos, “Nem-lineáris programozási módszerek hatóköre” (Power of nonlinear programming methods), A Magyar Tudományos Akadémia Közgazdaságtudományi Intézetének Közleményei, 20, Budapest (1966).
B. Martos, “Subdefinite matrices and quadratic forms”,SIAM Journal on Applied Mathematics 17 (1969) 1215–1223.
B. Martos, “Quadratic programming with a quasi-convex objective function”,Operations Research 19 (1971) 82–97.
B. Martos,Nonlinear programming: theory and methods, (North-Holland, Amsterdam, 1975).
P. Mereau and J.G. Paquet, “Second order conditions for pseudoconvex functions”,SIAM Journal on Applied Mathematics 27 (1974) 131–137.
J. Ponstein, “Seven kinds of convexity”,SIAM Review 9 (1967) 115–119.
S. Schaible, “Beiträge zur quasikonvexen Programmierung”, Ph.D. Dissertation, Universität Köln (1971).
S. Schaible, “Quasi-convex optimization in general real linear spaces”,Zeitschrift für Operations Research 16 (1972) 205–213.
S. Schaible, “Quasi-concave, strictly quasi-concave and pseudo-concave functions”, in: R. Henn, H.P. Künzi and H. Schubert, eds.Methods of operations research 17 (Anton Hain, Meisenheim, 1973) pp. 308–316.
S. Schaible, “Quasi-convexity and pseudo-convexity of cubic functions”,Mathematical Programming 5 (1973) 243–247.
S. Schaible, “Second order characterizations of pseudo-convex quadratic functions”,Journal of Optimization Theory and Applications 21 (1977) 15–26.
J. Stoer and C. Witzgall, “Convexity and optimization in finite dimensions I”, (Springer, Berlin, 1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Avriel, M., Schaible, S. Second order characterizations of pseudoconvex functions. Mathematical Programming 14, 170–185 (1978). https://doi.org/10.1007/BF01588964
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01588964