Skip to main content
Log in

On the Fermat—Weber problem with convex cost functions

  • Published:
Mathematical Programming Submit manuscript

Abstract

We treat an extension of the generalized Fermat—Weber problem with convex cost functions. It is shown that the entire sequence of iterates (as opposed to selected subsequences) generated by each of the two proposed algorithms converges to a minimum although the economic function is not strictly convex. The general idea is to associate, with the economic function calledh, a family of more regular strictly convex functions, the lower envelope of which is the functionh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cooper, “Location—allocation problems”,Operations Research 11 (1963) 331–343.

    Google Scholar 

  2. L. Cooper, “Heuristic methods for location—allocation problems”,SIAM Review 6 (1964) 37–52.

    Google Scholar 

  3. F. Cordellier, J.C. Fiorot and S.K. Jacobsen, “An algorithm for the generalized Fermat—Weber problem”, to appear.

  4. F. Cordellier and J.C. Fiorot, “Trois algorithmes pour résoudre le problème de Fermat—Weber généralisé”,Bulletin de la direction des études et recherches (E.D.F.) Série C, Supplément au no. 2 (1976) 35–54.

    Google Scholar 

  5. F. Cordellier and J.C. Fiorot, “Sur le problème de Fermat—Weber avec fonctions de coût convexes”, publ. no. 74, Laboratoire de Calcul, Université de Lille I (1976)—IX International Symposium on Mathematical Programming, Budapest (1976).

  6. R.L. Francis and J.A. White,Facility layout and location: an analytical approach, (Prentice Hall, Englewood Cliffs, NJ, 1974).

    Google Scholar 

  7. S.K. Jacobsen, “Weber rides again”, Working paper no. 2252/037042, IMSOR, The Technical University of Denmark, Lyngby, Denmark (December 1974).

    Google Scholar 

  8. P. Huard, “Optimisation dansR n (programmation mathématique)”, Cours de 3ème cycle, 2ème partie, Université de Lille I (1971).

  9. I.N. Katz, “On the convergence of a numerical scheme for solving some locational equilibrium problems”,SIAM Journal on Applied Mathematics 17 (1969) 1224–1231.

    Google Scholar 

  10. H.W. Kuhn, “A note on Fermat's problem”,Mathematical Programming 4 (1973) 98–107.

    Google Scholar 

  11. R.E. Kuenne and R.M. Soland, “Exact and approximate solutions to the multisource Weber problem”,Mathematical Programming 3 (1972) 193–209.

    Google Scholar 

  12. P.J. Laurent,Approximation et optimisation (Hermann, Paris, 1972).

    Google Scholar 

  13. C. Lemarechal, “An extension of Davidon methods to nondifferentiable functions”,Mathematical Programming Study 3 (1975) 95–109.

    Google Scholar 

  14. L.M. Ostresh, “On the convergence of a class of iterative methods for solving the location problem”,Operations Research (to appear).

  15. E. Polak, “On the implementation of conceptual algorithms”, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 275–291.

    Google Scholar 

  16. B.T. Poljak, “A general method of solving extremum problems”,Doklady Akademii Nauk SSSR 174 (1967) 33–36 (in Russian). [English translation:Soviet Mathematics Doklady 8 (1967) 593–597.]

    Google Scholar 

  17. A. Planchart and A.P. Hurter, “An efficient algorithm for the solution of the Weber problem with mixed norms”,SIAM Journal on Control 13 (1975) 650–665.

    Google Scholar 

  18. E. Weiszfeld, “Sur le point pour lequel la somme des distances den points donnés est minimum”,Tôhuku Mathematical Journal 43 (1937) 355–386.

    Google Scholar 

  19. R.E. Wendel and E. Peterson, “Duality in generalized location problems”, Working paper, Department of Industrial Engineering and Management Sciences, North-Western University, Evanston, IL (1971).

    Google Scholar 

  20. P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”,Mathematical Programming Study 3 (1975) 145–173.

    Google Scholar 

  21. W.I. Zangwill,Nonlinear programming: a unified approach (Prentice Hall, Englewood Cliffs, NJ, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordellier, F., Fiorot, J.C. On the Fermat—Weber problem with convex cost functions. Mathematical Programming 14, 295–311 (1978). https://doi.org/10.1007/BF01588972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01588972

Key words

Navigation