Abstract
We treat an extension of the generalized Fermat—Weber problem with convex cost functions. It is shown that the entire sequence of iterates (as opposed to selected subsequences) generated by each of the two proposed algorithms converges to a minimum although the economic function is not strictly convex. The general idea is to associate, with the economic function calledh, a family of more regular strictly convex functions, the lower envelope of which is the functionh.
Similar content being viewed by others
References
L. Cooper, “Location—allocation problems”,Operations Research 11 (1963) 331–343.
L. Cooper, “Heuristic methods for location—allocation problems”,SIAM Review 6 (1964) 37–52.
F. Cordellier, J.C. Fiorot and S.K. Jacobsen, “An algorithm for the generalized Fermat—Weber problem”, to appear.
F. Cordellier and J.C. Fiorot, “Trois algorithmes pour résoudre le problème de Fermat—Weber généralisé”,Bulletin de la direction des études et recherches (E.D.F.) Série C, Supplément au no. 2 (1976) 35–54.
F. Cordellier and J.C. Fiorot, “Sur le problème de Fermat—Weber avec fonctions de coût convexes”, publ. no. 74, Laboratoire de Calcul, Université de Lille I (1976)—IX International Symposium on Mathematical Programming, Budapest (1976).
R.L. Francis and J.A. White,Facility layout and location: an analytical approach, (Prentice Hall, Englewood Cliffs, NJ, 1974).
S.K. Jacobsen, “Weber rides again”, Working paper no. 2252/037042, IMSOR, The Technical University of Denmark, Lyngby, Denmark (December 1974).
P. Huard, “Optimisation dansR n (programmation mathématique)”, Cours de 3ème cycle, 2ème partie, Université de Lille I (1971).
I.N. Katz, “On the convergence of a numerical scheme for solving some locational equilibrium problems”,SIAM Journal on Applied Mathematics 17 (1969) 1224–1231.
H.W. Kuhn, “A note on Fermat's problem”,Mathematical Programming 4 (1973) 98–107.
R.E. Kuenne and R.M. Soland, “Exact and approximate solutions to the multisource Weber problem”,Mathematical Programming 3 (1972) 193–209.
P.J. Laurent,Approximation et optimisation (Hermann, Paris, 1972).
C. Lemarechal, “An extension of Davidon methods to nondifferentiable functions”,Mathematical Programming Study 3 (1975) 95–109.
L.M. Ostresh, “On the convergence of a class of iterative methods for solving the location problem”,Operations Research (to appear).
E. Polak, “On the implementation of conceptual algorithms”, in: Mangasarian, Ritter and Rosen, eds.,Nonlinear programming (Academic Press, New York, 1970) pp. 275–291.
B.T. Poljak, “A general method of solving extremum problems”,Doklady Akademii Nauk SSSR 174 (1967) 33–36 (in Russian). [English translation:Soviet Mathematics Doklady 8 (1967) 593–597.]
A. Planchart and A.P. Hurter, “An efficient algorithm for the solution of the Weber problem with mixed norms”,SIAM Journal on Control 13 (1975) 650–665.
E. Weiszfeld, “Sur le point pour lequel la somme des distances den points donnés est minimum”,Tôhuku Mathematical Journal 43 (1937) 355–386.
R.E. Wendel and E. Peterson, “Duality in generalized location problems”, Working paper, Department of Industrial Engineering and Management Sciences, North-Western University, Evanston, IL (1971).
P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable functions”,Mathematical Programming Study 3 (1975) 145–173.
W.I. Zangwill,Nonlinear programming: a unified approach (Prentice Hall, Englewood Cliffs, NJ, 1969).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cordellier, F., Fiorot, J.C. On the Fermat—Weber problem with convex cost functions. Mathematical Programming 14, 295–311 (1978). https://doi.org/10.1007/BF01588972
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01588972