Abstract
If S is a finite set of points in the plane and no conic contains all points of S, then S determines a conic which contains exactly five points ofS.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
W. E. Bonnice and L. M. Kelly, On the number of ordinary planes,J. Combin. Theory Ser. A 11 (1971), 45–53.
P. B. Borwein, On Sylvester's problem and Haar spaces,Pacific J. Math. 109 (1983), 275–278.
H. M. S. Coxeter,The Real Projective Plane, 2nd edn., Cambridge University Press, Cambridge, 1955.
H. M. S. Coxeter,Introduction to Geometry, Wiley, New York, 1961. Footnote, p. 65.
P. Erdös, Problem #4065,Amer. Math. Monthly 50 (1943), 65.
S. Hansen, A generalization of a theorem of Sylvester on the lines determined by a finite point set,Math. Scand. 16 (1965), 175–180.
S. Hansen,Contributions to the Sylvester-Gallai Theory, Polyteknisk Forlag, Copenhagen, 1981.
R. Hartshorne,Algebraic Geometry, Springer-Verlag, New York, 1977.
L. M. Kelly, Classroom notes,Amer. Math. Monthly 55 (1948), 28.
L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined byn points,Canad. J. Math. 10 (1958), 210–219.
T. Motzkin, The lines and planes connecting the points of a finite set,Trans. Amer. Math. Soc. 70 (1951), 451–464.
R. Steinberg, Solution to problem #4065,Amer. Math. Monthly 51 (1944), 169–171.
J. J. Sylvester, Mathematical questions and solutions, 11851,The Educatonal Times (1983), 98.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Wiseman, J.A., Wilson, P.R. A sylvester theorem for conic sections. Discrete Comput Geom 3, 295–305 (1988). https://doi.org/10.1007/BF02187914
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02187914