Abstract
A general initialization principle is presented that increases the efficiency of algorithms in terms of computation time. It is applied to the algorithm NS in [1] and results in significant performance improvements. In addition a programming bug is shown in the original version of NS.
Zusammenfassung
Es wird ein allgemeines Initialisierungsprinzip vorgeschlagen, das die Effizienz von Algorithmen bezüglich der Rechenzeit erhöht. Seine Anwendung auf den Algorithmus NS aus [1] und die daraus resultierenden Verbesserungen werden vorgeführt. Außerdem wird auf einen Programmierfehler in der Originalversion von NS hingewiesen.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahrens, J. H., Dieter, U.: Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions. Computing12, 223–246 (1974).
Ahrens, J. H., Dieter, U.: Non-Uniform Random Numbers. Preliminary version in preprint, Graz, 1973.
Dijkstra, E. W.: A Short Introduction to the Art of Programming. (Technical Notes, unpublished.)
Dijkstra, E. W.: Programming Methodologies: Their Objectives and their Nature. In: Structured Programming, Infotech International, 1976.
Dahl, O.-J., Dijkstra, E. W., Hoare, C. A. R.: Structured Programming. London-New York: Academic Press 1973.
Bauer, F. L.: Variables Considered Harmful. In: A Philosophy of Programming (Lecture Notes in Computer Science No. 46) Language Hierarchies and Interfaces., Berlin-Heidelberg-New York: Springer 1976.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Apostolopoulos, N., Schuff, G. Initializing algorithms: A note to the article “Computer methods for sampling from gamma, beta, poisson and binomial distributions”. Computing 22, 185–189 (1979). https://doi.org/10.1007/BF02253129
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253129