Skip to main content
Log in

Quantum teleportation and dense coding via topological basis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By means of Temperley–Lieb Algebra and topological basis, we make a new realization of topological basis, and get sixteen complete orthonormal topological basis states which are all maximally entangled for four quasi-particles. Then we present an explicit protocol for teleporting an arbitrary two-qubit state via a topological basis entanglement channel. We also show that four bits of classical information can be encoded into a topological basis state by two-particle unitary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Chen, P.X., Zhu, S.Y., Guo, G.C.: General form of genuine multipartite entanglement quantum channels for teleportation. Phys. Rev. A 74, 032324 (2006)

    Article  ADS  Google Scholar 

  4. Lee, J., Min, H., Oh, S.D.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)

    Article  ADS  Google Scholar 

  5. Roa, L., Delgado, A., Fuentes-Guridi, I.: Optimal conclusive teleportation of quantum states. Phys. Rev. A 68, 022310 (2003)

    Article  ADS  Google Scholar 

  6. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  7. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett 96, 060502 (2006)

    Article  ADS  Google Scholar 

  8. Dong, H., Xu, D.-Z., Huang, J.-F., Sun, C.-P.: Coherent excitation transfer via the dark-state channel in a bionic system. Light Sci. Appl. 1, e2 (2012). doi:10.1038/lsa.2012.2

    Article  Google Scholar 

  9. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  10. Pan, J.-W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435–4438 (2001)

    Article  ADS  Google Scholar 

  11. Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Briegel, H.J., Pan, J.-W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature (London) 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  12. Bennett, C.H., Wiesner, S.J.: ccommunication via one- and two-particle operatiors on Einstein-Podolsky-Rosen states. Phys. Rev. Lett 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. (N.Y.) 303, 2 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Preskill, J.: Quantum Computation, Lecture Notes for Physics, 219 (2004)

  15. Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett 48, 1144–1146 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  16. Moore, G., Read, N.: Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 360, 362–396 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ardonne, E., Schoutens, K.: Schoutens, wavefunctions for topological quantum registers. Ann. Phys. (N.Y.) 322, 201 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Hikami, K.: Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum hall states. Ann. Phys. (N.Y.) 323, 1729–1769 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Feiguin, A., Trebst, S., Ludwig, A.W.W., Troyer, M., Kitaev, A., Wang, Z., Freedman, M.H.: Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett 98, 160409 (2007)

    Article  ADS  Google Scholar 

  20. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys 80, 1083–1159 (2008)

    Article  MATH  ADS  Google Scholar 

  21. Gils, C., Ardonne, E., Trebst, S., Ludwig, A.W.W., Troyer, M., Wang, Z.: Collective states of interacting anyons, edge states, and the nucleation of topological liquids. Phys. Rev. Lett 103, 070401 (2009)

    Article  ADS  Google Scholar 

  22. Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wang, G.C., Xue, K., Sun, C.F., Zhou, C.C., Du, G.J.: Quantum Tunneling Effect and Quantum Zeno Effect in a Topological System, e-print arXiv:1012.1474v2

  24. Sun, C.F., Xue, K., Wang, G.C., Zhou, C.C., Du, G.J.: The topological basis realization and the correspongding XXX spin chain. EPL 94, 50001 (2011)

    Article  ADS  Google Scholar 

  25. Edwards, C., Arbabi, A., Popescu, G., Goddard, L.L.: Optically monitoring and controlling nanoscale topography during semiconductor etching. Light Sci. Appl. 1, e30 (2012). doi:10.1038/lsa.2012.30

    Article  Google Scholar 

  26. Marx, R., Fahmy, A., Kauffman, L., Lomonaco, S., Spörl, A., Pomplun, N., Schulte-Herbrüggen, T., Myers, J.M., Glaser, S.J.: Nuclear-magnetic-resonance quantum calculations of the Jones polynomial. Phys. Rev. A 81, 032319 (2009)

    Article  ADS  Google Scholar 

  27. Temperley, H.N.V., Lieb, E.H.: Relations between the ’Percolation’ and ’Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ’Percolation’ Problem. Proc. R. Soc. Lond. A 322, 251–280 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Kauffman, L.H., Lomonacom Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys 6, 134 (2004)

    Article  ADS  Google Scholar 

  29. Kauffman, L.: Knots in Physics. World Scientific Publ Co Ltd, Singapore (1991)

    Google Scholar 

  30. Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43, 4273 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Barnum, H., Knill, E., Ortiz, G., Viola, L.: Generalizations of entanglement based on coherent states and convex sets. Phys. Rev. A 68, 032308 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF of China (Grants No. 11175043) and the Fundamental Research Funds for the Central Universities (Grants No. 11QNJJ012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Xue, K., Sun, C. et al. Quantum teleportation and dense coding via topological basis. Quantum Inf Process 12, 3369–3381 (2013). https://doi.org/10.1007/s11128-013-0614-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0614-9

Keywords

Navigation