Skip to main content
Log in

Robust Stability and \(H_{\infty }\) Control of Discrete-Time Uncertain Impulsive Systems with Time-Varying Delay

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the robust stability and \(H_{\infty }\) control problems for a class of discrete-time uncertain impulsive systems with time-varying delay. Sufficient conditions for the robust stability, stabilization and \(H_\infty \) control of the considered systems are developed. Some numerical examples are presented to show the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Anokhin, L. Berezansky, E. Braverman, Exponential stability of linear delay impulsive differential equations. J. Math. Anal. Appl. 193(3), 923–941 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Arthi, K. Balachandran, Controllability of second-order impulsive evolution systems with infinite delay. Nonlinear Anal. Hybrid Syst. 11, 139–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability, Theory, and Applications (Ellis Horwood, Chichester, 1989)

    MATH  Google Scholar 

  4. G. Ballinger, X. Liu, Existence and uniqueness results for impulsive delay differential equations. Dyn. Continuous Discrete Impuls. Syst. 5(1–4), 579–591 (1999)

    MathSciNet  MATH  Google Scholar 

  5. E. Bonotto, LaSalle’s theorems in impulsive semidynamical systems. Nonlinear Anal. Theory Methods Appl. 71(5–6), 2291–2297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Briat, A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems. IEEE Trans. Autom. Control 57(12), 3241–3246 (2012)

    Article  MathSciNet  Google Scholar 

  7. P. Cheng, F. Deng, F. Yao, Exponential stability analysis of impulsive stochastic functional differential systems with delayed impulses. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2104–2114 (2014)

    Article  MathSciNet  Google Scholar 

  8. W.H. Chen, W.X. Zheng, Robust stability and \(H_{\infty }\)-control of uncertain impulsive systems with time-delay. Automatica 45(1), 109–117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Cui, M. Han, H. Yang, Some sufficient conditions for oscillation of impulsive delay hyperbolic systems with Robin boundary conditions. J. Comput. Appl. Math. 180(2), 365–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Frigon, D. O’Regan, Impulsive differential equations with variable times. Nonlinear Anal. Theory Methods Appl. 26(12), 1913–1922 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z.H. Guan, J. Yao, D.J. Hill, Robust \(H_\infty \) control of singular impulsive systems with uncertain perturbations. IEEE Trans. Circuits Syst. II 52(6), 293–298 (2005)

    Article  Google Scholar 

  12. J.P. Hespanha, D. Liberzon, A.R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44(11), 2735–2744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Hu, Z. Wang, H. Gao, L.K. Stergioulas, Robust \(H_\infty \) sliding mode control for discrete time-delay systems with stochastic nonlinearities. J. Frankl. Inst. 349(4), 1459–1479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Huang, Z. Xiang, H.R. Karimi, Input-output finite-time stability of discrete-time impulsive switched linear systems with state delays. Circuits Syst. Signal Process. 33(1), 141–158 (2014)

    Article  MathSciNet  Google Scholar 

  15. E. Kaslik, S. Sivasundaram, Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis. Neural Netw. 24(4), 370–377 (2011)

    Article  MATH  Google Scholar 

  16. A. Khadra, X. Liu, X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9), 1491–1502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)

    Book  MATH  Google Scholar 

  18. C. Li, S. Wu, G. Feng, X. Liao, Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans. Neural Netw. 22(2), 323–329 (2011)

    Article  Google Scholar 

  19. S. Li, J. Zhang, W. Tang, Robust \(H_\infty \) control for impulsive switched complex delayed networks. Math. Comput. Model. 56(11), 257–267 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Li, S. Song, Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3892–3900 (2014)

    Article  MathSciNet  Google Scholar 

  21. H. Li, Y. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control (2015). doi:10.1109/TAC.2015.2503566

    Google Scholar 

  22. H. Li, Y. Pan, Q. Zhou, Filter design for interval type-2 fuzzy systems with d stability constraints under a unified frame. IEEE Trans. Fuzzy Syst. 23(3), 719–725 (2015)

    Article  Google Scholar 

  23. H. Li, X. Sun, L. Wu, H.K. Lam, State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Article  Google Scholar 

  24. H. Li, C. Wu, P. Shi, Y. Gao, Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. 45(11), 2378–2389 (2015)

    Article  Google Scholar 

  25. H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybernetics (2015). doi:10.1109/TCYB.2015.2413134

    Google Scholar 

  26. B. Liu, D.J. Hill, Uniform stability of large-scale delay discrete impulsive systems. Int. J. Control 82(2), 228–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Liu, S. Zhao, Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Trans. Autom. Control 56(2), 395–399 (2011)

    Article  MathSciNet  Google Scholar 

  28. X. Liu, Z. Zhang, Uniform asymptotic stability of impulsive discrete systems with time delay. Nonlinear Anal. Theory Methods Appl. 74(15), 4941–4950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Liu, D. Yue, Event-based fault detection for networked systems with communication delay and nonlinear perturbation. J. Frankl. Inst. 350(9), 2791–2807 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Liu, S. Fei, E. Tian, Event-Based \(H_{\infty }\) filter design for sensor networks with missing measurements. Abstract Appl. Anal. 2014 (2014)

  31. E. Medina, D. Lawrence, State feedback stabilization of linear impulsive systems. Automatica 45(6), 1476–1480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57(5), 378–385 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. I.R. Petersen, A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8(4), 351–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Qiu, S.X. Ding, H. Gao, S. Yin, Fuzzy-model-based reliable static output feedback \(H_\infty \) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2015.2457934

  35. J. Qiu, G. Feng, H. Gao, Static-output-feedback \(H_\infty \) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  36. J. Qiu, H. Tian, Q. Lu, H. Gao, Nonsynchronized robust filtering design for continuous-time T–S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)

    Article  Google Scholar 

  37. J. Qiu, Y. Wei, H.R. Karimi, New approach to delay-dependent \(H_\infty \) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Frankl. Inst. 352(1), 189–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. I.M. Stamova, T.G. Stamov, Asymptotic stability of impulsive control neutral-type systems. Int. J. Control 87(1), 25–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. L. Stone, B. Shulgin, Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Math. Comput. Model. 31(4–5), 201–215 (2000)

    MathSciNet  MATH  Google Scholar 

  40. J. Suo, J. Sun, Asymptotic stability of differential systems with impulsive effects suffered by logic choice. Automatica 51, 302–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Suykens, T. Yang, L. Chua, Impulsive synchronization of chaotic Lur’e systems by measurement feedback. Int. J. Bifur. Chaos 8, 1371–1381 (1998)

    Article  MATH  Google Scholar 

  42. T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learning Syst. doi:10.1109/TNNLS.2015.2411671

  43. Y. Wang, L. Xie, C.E. de Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Wei, G. Feng, Z. Wang, Robust \(H_\infty \) control for discrete-time fuzzy systems with infinite-distributed delays. IEEE Trans. Fuzzy Syst. 17(1), 224–232 (2009)

    Article  Google Scholar 

  45. S. Wu, C. Li, X. Liao, S. Duan, Exponential stability of impulsive discrete systems with time delay and applications in stochastic neural networks: a Razumikhin approach. Neurocomputing 82, 29–36 (2012)

    Article  Google Scholar 

  46. H. Xu, K.L. Teo, Exponential stability with \(L_2\)-gain condition of nonlinear impulsive switched systems. IEEE Trans. Autom. Control 55(10), 2429–2433 (2010)

    Article  MathSciNet  Google Scholar 

  47. T. Yang, Impulsive Systems and Control: Theory and Applications (Nova Science, New York, 2001)

    Google Scholar 

  48. S. Yang, B. Shi, S. Hao, Input-to-state stability for discrete-time nonlinear impulsive systems with delays. Int. J. Robust Nonlinear Control 23(4), 400–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay. IEEE Trans. Autom. Control 54(4), 830–834 (2009)

    Article  MathSciNet  Google Scholar 

  50. Y. Zhang, Exponential stability of impulsive discrete systems with time delays. Appl. Math. Lett. 25(12), 2290–2297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Zhang, Stochastic stability of discrete-time Markovian jump delay neural networks with impulses and incomplete information on transition probability. Neural Netw. 46, 276–282 (2013)

    Article  MATH  Google Scholar 

  52. Z. Zhang, X. Liu, Stability analysis and synthesis of discrete impulsive switched systems with time-varying delays and parameter uncertainty. Circuits Syst. Signal Process. 32(1), 61–81 (2013)

    Article  MathSciNet  Google Scholar 

  53. Q. Zhu, J. Cao, Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 467–479 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the associate editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of the paper. This work is supported by the Shanghai Committee of Science and Technology [13ZR1444500].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. Robust Stability and \(H_{\infty }\) Control of Discrete-Time Uncertain Impulsive Systems with Time-Varying Delay. Circuits Syst Signal Process 35, 3882–3912 (2016). https://doi.org/10.1007/s00034-015-0237-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0237-8

Keywords

Navigation