Skip to main content
Log in

Memory-based Harris hawk optimization with learning agents: a feature selection approach

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Feature selection is a vital pre-processing phase for most machine learning and data mining courses. This article proposes new variants of the Harris hawk optimization called memory energetic Harris hawk optimization (MEHHO1 and MEHHO2) to select the optimal features for classification purposes. The MEHHO approaches adopt an energetic learning strategy and memory saving and updating mechanism. The former extends the chance of the algorithm escaping the local solutions, while the latter boosts the exploitation behavior. The proposed approaches are applied in the feature selection domain for assessing a subset of high discriminative features. The proposed approaches are evaluated on 13 low-dimensional and eight high-dimensional datasets. Also, the proposed approaches are utilized to solve the feature selection problem for the classification of electromyography signals. Our results prove the capability of the proposed approaches to find the optimal feature subset compared to the other five well-known optimization algorithms. Thus, the proposed MEHHO is expected to be a promising and effective technology to solve the feature selection problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://aliasgharheidari.com/SMA.html

  2. https://aliasgharheidari.com/HGS.html

  3. https://aliasgharheidari.com/RUN.html

  4. https://aliasgharheidari.com/HHO.html

  5. https://aliasgharheidari.com/HHO.html

References

  1. Wu C et al (2020) (2020) Critical review of data-driven decision-making in bridge operation and maintenance. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.1833946

    Article  Google Scholar 

  2. Yang Y et al (2015) New pore space characterization method of shale matrix formation by considering organic and inorganic pores. J Nat Gas Sci Eng 27:496–503

    Article  Google Scholar 

  3. Hu Y et al (2021) Corrosion fatigue lifetime assessment of high-speed railway axle EA4T steel with artificial scratch. Eng Fract Mech 245:107588

    Article  Google Scholar 

  4. Jiang Q et al (2017) Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol Neurobiol 54(1):594–600

    Article  Google Scholar 

  5. Ahmed S et al (2020) Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection. IEEE Access 8:102629–102645

    Article  Google Scholar 

  6. Mwangi B, Tian TS, Soares JC (2014) A review of feature reduction techniques in neuroimaging. Neuroinformatics 12(2):229–244

    Article  Google Scholar 

  7. He S, Guo F, Zou Q (2020) MRMD2. 0: a python tool for machine learning with feature ranking and reduction. Curr Bioinform 15(10):1213–1221

    Article  Google Scholar 

  8. Li T et al (2019) A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans Image Process 28(11):5663–5678

    Article  MathSciNet  MATH  Google Scholar 

  9. Ma H-J, Xu L-X, Yang G-H (2019) Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems. IEEE Trans Cybern 51(4):1913–1928

    Article  Google Scholar 

  10. Wang S et al (2020) Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence. Social Cogn Affect Neurosci 15(4):395–404

    Article  Google Scholar 

  11. Xiong L et al (2016) Improved stability and H∞ performance for neutral systems with uncertain Markovian jump. Nonlinear Anal Hybrid Syst 19:13–25

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang Q et al (2018) Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans Image Process 28(4):1866–1881

    Article  MathSciNet  Google Scholar 

  13. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  14. Zuo C et al (2015) Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Opt Lasers Eng 71:20–32

    Article  Google Scholar 

  15. Zuo C et al (2017) High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 7(1):1–22

    Article  Google Scholar 

  16. Li B-H et al (2020) A survey on blocking technology of entity resolution. J Comput Sci Technol 35(4):769–793

    Article  Google Scholar 

  17. Yang Y et al (2019) Omnidirectional motion classification with monostatic radar system using micro-Doppler signatures. IEEE Trans Geosci Remote Sens 58(5):3574–3587

    Article  Google Scholar 

  18. Zhang Z, Luo C, Zhao Z (2020) Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography. Nat Hazards 104(3):2511–2530

    Article  Google Scholar 

  19. Xu S et al (2020) Computer vision techniques in construction: a critical review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09504-3

    Article  Google Scholar 

  20. Li J et al (2020) IBDA: improved binary dragonfly algorithm with evolutionary population dynamics and adaptive crossover for feature selection. IEEE Access 8:108032–108051

    Article  Google Scholar 

  21. Ouadfel S, Abd Elaziz M (2020) Enhanced crow search algorithm for feature selection. Expert Syst Appl 159:113572

    Article  Google Scholar 

  22. Zhang Y et al (2020) Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis. Neurocomputing 430:185–212

    Article  Google Scholar 

  23. Namous F et al (2020) Evolutionary and swarm-based feature selection for imbalanced data classification. Evolutionary machine learning techniques. Springer, pp 231–250

    Chapter  Google Scholar 

  24. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  25. Wang C et al (2017) Feature selection based on neighborhood discrimination index. IEEE Trans Neural Netw Learn Syst 29(7):2986–2999

    MathSciNet  Google Scholar 

  26. Thaseen IS, Kumar CA (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J King Saud Univ Comput Inform Sci 29(4):462–472

    Google Scholar 

  27. Labani M et al (2018) A novel multivariate filter method for feature selection in text classification problems. Eng Appl Artif Intell 70:25–37

    Article  Google Scholar 

  28. Bharti KK, Singh PK (2016) Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl Soft Comput 43:20–34

    Article  Google Scholar 

  29. Mafarja M et al (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. Nature-inspired optimizers. Springer, pp 47–67

    Google Scholar 

  30. Bo W et al (2021) Malicious URLs detection based on a novel optimization algorithm. IEICE Trans Inf Syst 104(4):513–516

    Article  Google Scholar 

  31. Ma X et al (2021) Data-driven niching differential evolution with adaptive parameters control for history matching and uncertainty quantification. SPE J 26(02):993–1010

    Article  Google Scholar 

  32. Xue X et al (2020) Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3036393

    Article  Google Scholar 

  33. Jiang Q et al (2017) Optimizing multistage discriminative dictionaries for blind image quality assessment. IEEE Trans Multimedia 20(8):2035–2048

    Article  Google Scholar 

  34. Mafarja M et al (2020) Augmented whale feature selection for IoT attacks: structure, analysis and applications. Futur Gener Comput Syst 112:18–40

    Article  Google Scholar 

  35. Mohammadi FG, Abadeh MS (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43

    Article  Google Scholar 

  36. Ala’M A-Z et al (2021) Evolutionary competitive swarm exploring optimal support vector machines and feature weighting. Soft Comput 25(4):3335–3352

    Article  Google Scholar 

  37. Nguyen BH, Xue B, Zhang M (2020) A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evolutionary Comput 54:100663

    Article  Google Scholar 

  38. Chen H et al (2019) An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Syst Appl 154:113018

    Article  Google Scholar 

  39. Fan Y et al (2020) Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Syst Appl 157:113486

    Article  Google Scholar 

  40. Fan Y et al (2020) Boosted hunting-based fruit fly optimization and advances in real-world problems. Expert Syst Appl 159:113502

    Article  Google Scholar 

  41. Faris H et al (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks. Information Fusion 48:67–83

    Article  Google Scholar 

  42. Faris H et al (2020) Time-varying hierarchical chains of salps with random weight networks for feature selection. Expert Syst Appl 140:112898

    Article  Google Scholar 

  43. Heidari AA, Abbaspour RA, Chen H (2019) Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training. Appl Soft Comput 81:105521

    Article  Google Scholar 

  44. Lin A et al (2019) Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier. IEEE Access 7:67235–67248

    Article  Google Scholar 

  45. Liu G et al (2020) Prediction optimization of cervical hyperextension injury: Kernel extreme learning machines with orthogonal learning butterfly optimizer and Broyden- Fletcher-Goldfarb-Shanno algorithms. IEEE Access 8:119911–119930

    Article  Google Scholar 

  46. Liu G et al (2020) Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine. IEEE Access 8:46895–46908

    Article  Google Scholar 

  47. Song S et al (2020) Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns. Knowl-Based Syst 215:106425

    Article  Google Scholar 

  48. Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks

  49. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  50. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  51. Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Article  Google Scholar 

  52. Yang Y et al (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864

    Article  Google Scholar 

  53. Ahmadianfar I et al (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079

    Article  Google Scholar 

  54. Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  55. Zhang L et al (2018) Feature selection using firefly optimization for classification and regression models. Decis Support Syst 106:64–85

    Article  Google Scholar 

  56. Mafarja M et al (2018) Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl-Based Syst 161:185–204

    Article  Google Scholar 

  57. Taradeh M et al (2019) An evolutionary gravitational search-based feature selection. Inf Sci 497:219–239

    Article  Google Scholar 

  58. Jordehi AR, Jasni J (2012) Approaches for FACTS optimization problem in power systems. In: 2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia, pp 355–360. https://doi.org/10.1109/PEOCO.2012.6230889

  59. El-Hasnony IM et al (2020) Improved feature selection model for big data analytics. IEEE Access 8:66989–67004

    Article  Google Scholar 

  60. Mafarja M et al (2018) Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl-Based Syst 145:25–45

    Article  Google Scholar 

  61. Zhang X et al (2020) Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Syst Applications 141:112976

    Article  Google Scholar 

  62. Zhao X et al (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Article  Google Scholar 

  63. Abdel-Basset M et al (2020) A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst Appl 139:112824

    Article  Google Scholar 

  64. Hu J et al (2021) Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection. Knowl-Based Syst 213:106684

    Article  Google Scholar 

  65. Emary E, Zawbaa HM, Hassanien AE (2016) Binary grey wolf optimization approaches for feature selection. Neurocomputing 172:371–381

    Article  Google Scholar 

  66. Tu Q, Chen X, Liu X (2019) Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput 76:16–30

    Article  Google Scholar 

  67. Rezaee Jordehi A, Jasni J, Abdul Wahab NI, Abd Kadir MZA (2013) Particle swarm optimisation applications in FACTS optimisation problem. In: 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), pp 193–198, https://doi.org/10.1109/PEOCO.2013.6564541

  68. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol 1, pp. 325–331. https://doi.org/10.1109/CEC.2004.1330875  

  69. Bai B et al (2021) Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci 546:42–59

    Article  MathSciNet  MATH  Google Scholar 

  70. Faris H et al (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67

    Article  Google Scholar 

  71. Ahila R, Sadasivam V, Manimala K (2015) An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances. Appl Soft Comput 32:23–37

    Article  Google Scholar 

  72. Zhang Y et al (2014) Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl-Based Syst 64:22–31

    Article  Google Scholar 

  73. Srisukkham W et al (2017) Intelligent leukaemia diagnosis with bare-bones PSO based feature optimization. Appl Soft Comput 56:405–419

    Article  Google Scholar 

  74. Tran B, Xue B, Zhang M (2017) A new representation in PSO for discretization-based feature selection. IEEE Trans Cybern 48(6):1733–1746

    Article  Google Scholar 

  75. Too J, Abdullah AR, Mohd Saad N (2019) Hybrid binary particle swarm optimization differential evolution-based feature selection for EMG signals classification. Axioms 8(3):79

    Article  Google Scholar 

  76. Amoozegar M, Minaei-Bidgoli B (2018) Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism. Expert Syst Appl 113:499–514

    Article  Google Scholar 

  77. Al-Madi N, Faris H, Mirjalili S (2019) Binary multi-verse optimization algorithm for global optimization and discrete problems. Int J Mach Learn Cybern 10(12):3445–3465

    Article  Google Scholar 

  78. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48(10):3462–3481

    Article  Google Scholar 

  79. Kaur T, Saini BS, Gupta S (2018) A novel feature selection method for brain tumor MR image classification based on the Fisher criterion and parameter-free Bat optimization. Neural Comput Appl 29(8):193–206

    Article  Google Scholar 

  80. Wang F et al (2018) A hybrid model integrating improved flower pollination algorithm-based feature selection and improved random forest for NOX emission estimation of coal-fired power plants. Measurement 125:303–312

    Article  Google Scholar 

  81. Too J, Abdullah AR, Mohd Saad N (2019) Binary competitive swarm optimizer approaches for feature selection. Computation 7(2):31

    Article  Google Scholar 

  82. Forsati R et al (2014) Enriched ant colony optimization and its application in feature selection. Neurocomputing 142:354–371

    Article  Google Scholar 

  83. Wang M et al (2017) Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm. Inf Sci 402:50–68

    Article  MATH  Google Scholar 

  84. Ma B, Xia Y (2017) A tribe competition-based genetic algorithm for feature selection in pattern classification. Appl Soft Comput 58:328–338

    Article  Google Scholar 

  85. Jiao S et al (2020) Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models. Energy 203:117804

    Article  Google Scholar 

  86. Rodriguez-Esparza E et al (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428

    Article  Google Scholar 

  87. Ridha HM et al (2020) Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers Manag 209:112660

    Article  Google Scholar 

  88. Thaher T et al (2020) Binary Harris Hawks optimizer for high-dimensional, low sample size feature selection. Evolutionary machine learning techniques. Springer, pp 251–272

    Chapter  Google Scholar 

  89. Too J, Abdullah AR, Mohd Saad N (2019) A new quadratic binary harris hawk optimization for feature selection. Electronics 8(10):1130

    Article  Google Scholar 

  90. Zhang Y et al (2020) Boosted binary Harris hawks optimizer and feature selection. Eng Comput. https://doi.org/10.1007/s00366-020-01028-5

    Article  Google Scholar 

  91. Faramarzi A et al (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190

    Article  Google Scholar 

  92. Shi B et al (2020) Predicting di-2-ethylhexyl phthalate toxicity: hybrid integrated Harris Hawks optimization with support vector machines. IEEE Access 8:161188–161202

    Article  Google Scholar 

  93. Wei Y et al (2020) Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone Harris Hawks optimizer. IEEE Access 8:76841–76855

    Article  Google Scholar 

  94. Chen H et al (2020) Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies. Futur Gener Comput Syst 111:175–198

    Article  Google Scholar 

  95. Rodríguez-Esparza E et al (2020) An efficient Harris hawks-inspired image segmentation method. Expert Syst Appl 155:113428

    Article  Google Scholar 

  96. Elaziz MA et al (2020) A competitive chain-based Harris Hawks Optimizer for global optimization and multi-level image thresholding problems. Appl Soft Comput J 95:106347

    Article  Google Scholar 

  97. Chen H et al (2020) Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J Clean Prod 244:118778

    Article  Google Scholar 

  98. Li C et al (2021) Memetic Harris Hawks optimization: developments and perspectives on project scheduling and QoS-aware web service composition. Expert Syst Appl 171:114529

    Article  Google Scholar 

  99. Ye H et al (2021) Diagnosing coronavirus disease 2019 (COVID-19): efficient Harris Hawks-inspired fuzzy K-nearest neighbor prediction methods. IEEE Access 9:17787–17802

    Article  Google Scholar 

  100. Alabool HM et al (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl 33(15):8939–8980

    Article  Google Scholar 

  101. Gupta S et al (2020) Opposition-based learning Harris Hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl 158:113510

    Article  Google Scholar 

  102. Aljarah I et al (2020) A dynamic locality multi-objective salp swarm algorithm for feature selection. Comput Indus Eng 147:106628

    Article  Google Scholar 

  103. Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65

    Article  Google Scholar 

  104. Asuncion A, Newman D (2007) UCI machine learning repository. Irvine, CA, USA. http://archive.ics.uci.edu/ml/index.php

  105. Datasets | Feature Selection @ ASU. 2019. http://featureselection.asu.edu/datasets.php

  106. Rezaee Jordehi A (2021) An improved particle swarm optimisation for unit commitment in microgrids with battery energy storage systems considering battery degradation and uncertainties. Int J Energy Res 45(1):727–744

    Article  Google Scholar 

  107. Rezaee Jordehi A (2020) A mixed binary‐continuous particle swarm optimisation algorithm for unit commitment in microgrids considering uncertainties and emissions. Int Transact Elect Energy Syst 30(11):e12581

    Google Scholar 

  108. Rezaee Jordehi A (2021) Dynamic environmental‐economic load dispatch in grid‐connected microgrids with demand response programs considering the uncertainties of demand, renewable generation and market price. Int J Numerical Model Elect Net Devices Fields 34(1):e2798

    Google Scholar 

  109. Jordehi AR (2020) Particle swarm optimisation with opposition learning-based strategy: an efficient optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems. Soft Comput 24(24):18573–18590

    Article  Google Scholar 

  110. Jordehi AR (2018) Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules. Solar Energy 159:78–87

    Article  Google Scholar 

  111. Jordehi AR (2016) Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules. Energy Conver Manag 129:262–274

    Article  Google Scholar 

  112. Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31(7):1995–2014

    Article  Google Scholar 

  113. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  114. Shan W et al (2020) Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl-Based Syst 214:106728

    Article  Google Scholar 

  115. Mirjalili S et al (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  116. Gupta S et al (2019) Harmonized salp chain-built optimization. Eng Comput 37:1049–1079

    Article  Google Scholar 

  117. Abbassi A et al (2020) Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach. Energy 198:117333

    Article  Google Scholar 

  118. Gholami J, Pourpanah F, Wang X (2020) Feature selection based on improved binary global harmony search for data classification. Appl Soft Comput 93:106402

    Article  Google Scholar 

  119. Neggaz N et al (2020) Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst Appl 145:113103

    Article  Google Scholar 

  120. Sun G, Li C, Deng L (2021) An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Comput Appl 33:9503–9519

    Article  Google Scholar 

  121. Yang S et al (2021) Efficient spike-driven learning with dendritic event-based processing. Front Neurosci 15:97

    Article  Google Scholar 

  122. Zhang K et al (2021) History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE J. https://doi.org/10.2118/205340-PA

    Article  Google Scholar 

  123. Zhou Y et al (2019) Video coding optimization for virtual reality 360-degree source. IEEE J Sel Top Signal Process 14(1):118–129

    Article  Google Scholar 

  124. Chen Y et al (2021) Large group Activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recogn Lett 144:1–5

    Article  Google Scholar 

  125. Tu J et al (2020) Evolutionary biogeography-based Whale optimization methods with communication structure: towards measuring the balance. Knowl-Based Syst 212:106642

    Article  Google Scholar 

  126. Zou Q et al (2019) Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25(2):205–218

    Article  Google Scholar 

  127. Yang S et al (2021) BiCoSS: toward large-scale cognition brain with multigranular neuromorphic architecture. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3045492

    Article  Google Scholar 

  128. Aljarah I et al (2020) Multi-verse optimizer: theory, literature review, and application in data clustering. In: Mirjalili S, SongDong J, Lewis A (eds) Nature-inspired optimizers: theories, literature reviews and applications. Springer International Publishing, Cham, pp 123–141

    Google Scholar 

  129. Xu Z et al (2020) Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis. Expert Syst Appl 150:113282

    Article  Google Scholar 

  130. Liu Y et al (2020) Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array. Appl Sci 10(21):7924

    Article  Google Scholar 

  131. Niu Z et al (2020) The research on 220GHz multicarrier high-speed communication system. China Communications 17(3):131–139

    Article  Google Scholar 

  132. Zhang B et al (2020) Four-hundred gigahertz broadband multi-branch waveguide coupler. IET Microwaves Antennas Propag 14(11):1175–1179

    Article  Google Scholar 

  133. Niu Z-q et al (1998) A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band. J Zhejiang Univ Sci 1(1):1–10. https://doi.org/10.1631/FITEE.2000229

    Article  Google Scholar 

  134. Li A et al (2020) A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions. IEEE Commun Surveys Tutorials 22(2):796–839

    Article  Google Scholar 

  135. Zhang B et al (2019) A novel 220-GHz GaN diode on-chip tripler with high driven power. IEEE Electron Device Lett 40(5):780–783

    Article  Google Scholar 

  136. Zhao J et al (2020) Efficient deployment with geometric analysis for mmWave UAV communications. IEEE Wireless Commun Lett 9(7):1115–1119

    Google Scholar 

  137. Hu J et al (2020) Convergent multiagent formation control with collision avoidance. IEEE Trans Rob 36(6):1805–1818

    Article  Google Scholar 

  138. Hu J et al (2020) Object traversing by monocular UAV in outdoor environment. Asian J Control. https://doi.org/10.1002/asjc.2415

    Article  Google Scholar 

  139. Hu J et al (2020) Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Science China Technol Sci 63(1):65–72

    Article  Google Scholar 

  140. Hu J et al (2020) A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Front Inf Technol Electron Eng 21(5):675–692

    Article  Google Scholar 

  141. Ma H-J, Yang G-H (2015) Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections. IEEE Trans Autom Control 61(11):3240–3255

    Article  MathSciNet  MATH  Google Scholar 

  142. Ma H-J, Xu L-X (2021) Decentralized Adaptive Fault-Tolerant Control for a Class of Strong Interconnected Nonlinear Systems via Graph Theory. In: IEEE Transactions on Automatic Control, vol 66, no 7, pp 3227–3234. https://doi.org/10.1109/TAC.2020.3014292

  143. Zhang X et al (2020) Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems. IEEE/CAA J Automatica Sinica 8(4):916–928

    Article  MathSciNet  Google Scholar 

  144. Al-Timemy AH, Bugmann G, Escudero J (2018) Adaptive windowing framework for surface electromyogram-based pattern recognition system for transradial amputees. Sensors 18(8):2402

    Article  Google Scholar 

  145. Mesa I et al (2014) Channel and feature selection for a surface electromyographic pattern recognition task. Expert Syst Appl 41(11):5190–5200

    Article  Google Scholar 

  146. Sapsanis C, Georgoulas G, Tzes A (2013) EMG based classification of basic hand movements based on time-frequency features. 21st Mediterranean Conference on Control and Automation, pp 716-722. https://doi.org/10.1109/MED.2013.6608802  

  147. Sapsanis C, Georgoulas G, Tzes A, Lymberopoulos D (2013) Improving EMG based classification of basic hand movements using EMD. Annu Int Conf IEEE Eng Med Biol Soc 2013:5754–5757. https://doi.org/10.1109/EMBC.2013.6610858 

    Article  Google Scholar 

  148. Sui X, Wan K, Zhang Y (2019) Pattern recognition of SEMG based on wavelet packet transform and improved SVM. Optik 176:228–235

    Article  Google Scholar 

  149. Phinyomark A, Phukpattaranont P, Limsakul C (2012) Feature reduction and selection for EMG signal classification. Expert Syst Appl 39(8):7420–7431

    Article  Google Scholar 

  150. Tkach D, Huang H, Kuiken TA (2010) Study of stability of time-domain features for electromyographic pattern recognition. J Neuroeng Rehabil 7(1):1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxi Liang or Huiling Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Too, J., Liang, G. & Chen, H. Memory-based Harris hawk optimization with learning agents: a feature selection approach. Engineering with Computers 38 (Suppl 5), 4457–4478 (2022). https://doi.org/10.1007/s00366-021-01479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01479-4

Keywords

Navigation