Skip to main content
Log in

Fully dynamic bin packing revisited

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the fully dynamic bin packing problem, where items arrive and depart in an online fashion and repacking of previously packed items is allowed. The goal is, of course, to minimize both the number of bins used as well as the amount of repacking. A recently introduced way of measuring the repacking costs at each timestep is the migration factor, defined as the total size of repacked items divided by the size of an arriving or departing item. Concerning the trade-off between number of bins and migration factor, if we wish to achieve an asymptotic competitive ratio of \(1 + \epsilon \) for the number of bins, a relatively simple argument proves a lower bound of \(\Omega ({1}/{\epsilon })\) for the migration factor. We establish a nearly matching upper bound of \(O({1}/{\epsilon }^4 \log {1}/{\epsilon })\) using a new dynamic rounding technique and new ideas to handle small items in a dynamic setting such that no amortization is needed. The running time of our algorithm is polynomial in the number of items nand in \({1}/{\epsilon }\). The previous best trade-off was for an asymptotic competitive ratio of \({5}/{4}\) for the bins (rather than \(1+\epsilon \)) and needed an amortized number of \(O(\log n)\) repackings (while in our scheme the number of repackings is independent of n and non-amortized).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algorithm for online bin packing. CoRR arXiv:1707.01728 (2017)

  2. Balogh, J., Békési, J., Dósa, G., Sgall, J., van Stee, R.: The optimal absolute ratio for online bin packing. In: SODA, pp. 1425–1438. SIAM (2015)

  3. Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algorithms. In: Workshop on Approximation and Online Algorithms (WAOA), LNCS, vol. 6534, pp. 25–36 (2010)

    Chapter  Google Scholar 

  4. Balogh, J., Békési, J., Galambos, G., Reinelt, G.: Lower bound for the online bin packing problem with restricted repacking. SIAM J. Comput. 38(1), 398–410 (2008)

    Article  MathSciNet  Google Scholar 

  5. Beling, P., Megiddo, N.: Using fast matrix multiplication to find basic solutions. Theor. Comput. Sci. 205(1–2), 307–316 (1998)

    Article  MathSciNet  Google Scholar 

  6. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, pp. 577–578 (2010)

  7. Berndt, S., Jansen, K., Klein, K.: Fully dynamic bin packing revisited. In: APPROX-RANDOM, LIPIcs, vol. 40, pp. 135–151. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

  8. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management, IM 2007, pp. 119–128 (2007)

  9. Brown, D.: A lower bound for on-line one-dimensional bin packing algorithms. Technical Report R-864, Coordinated Science Laboratory University of Illinois Urbana (1979)

  10. Chan, J., Lam, T., Wong, P.: Dynamic bin packing of unit fractions items. Theor. Comput. Sci. 409(3), 521–529 (2008)

    Article  MathSciNet  Google Scholar 

  11. Chan, J., Wong, P., Yung, F.: On dynamic bin packing: an improved lower bound and resource augmentation analysis. Algorithmica 53(2), 172–206 (2009)

    Article  MathSciNet  Google Scholar 

  12. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017)

    Article  MathSciNet  Google Scholar 

  13. Coffman, E., Garey, M., Johnson, D.: Dynamic bin packing. SIAM J. Comput. 12(2), 227–258 (1983)

    Article  MathSciNet  Google Scholar 

  14. Daudjee, K., Kamali, S., López-Ortiz, A.: On the online fault-tolerant server consolidation problem. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, pp. 12–21 (2014)

  15. Eisemann, K.: The trim problem. Manag. Sci. 3(3), 279–284 (1957)

    Article  MathSciNet  Google Scholar 

  16. Epstein, L., Levin, A.: A robust APTAS for the classical bin packing problem. Math. Program. 119(1), 33–49 (2009)

    Article  MathSciNet  Google Scholar 

  17. Epstein, L., Levin, A.: Robust approximation schemes for cube packing. SIAM J. Optim. 23(2), 1310–1343 (2013)

    Article  MathSciNet  Google Scholar 

  18. Feldkord, B., Feldotto, M., Riechers, S.: A tight approximation for fully dynamic bin packing without bundling. In: ICALP (2018)

  19. Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online bin-packing model. J. Comput. 30(5), 1532–1551 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Gupta, A., Guruganesh, G., Kumar, A., Wajc, D.: Fully-dynamic bin packing with limited repacking. In: ICALP (2018)

  21. Heydrich, S., van Stee, R.: Beating the harmonic lower bound for online bin packing. In: ICALP, LIPIcs, vol. 55, pp. 41:1–41:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

  22. Ivković, Z., Lloyd, E.: Partially dynamic bin packing can be solved within \(1 + \epsilon \) in (amortized) polylogarithmic time. Inf. Process. Lett. 63(1), 45–50 (1997)

    Article  MathSciNet  Google Scholar 

  23. Ivković, Z., Lloyd, E.: Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J. Comput. 28(2), 574–611 (1998)

    Article  MathSciNet  Google Scholar 

  24. Ivković, Z., Lloyd, E.: Fully dynamic bin packing. In: Fundamental Problems in Computing, pp. 407–434. Springer (2009)

  25. Jansen, K., Klein, K.: A robust AFPTAS for online bin packing with polynomial migration. In: International Colloquium on Automata, Languages, and Programming (ICALP), pp. 589–600 (2013)

    Chapter  Google Scholar 

  26. Jansen, K., Klein, K., Kosche, M., Ladewig, L.: Online strip packing with polynomial migration. In: APPROX-RANDOM, LIPIcs, vol. 81, pp. 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

  27. Jansen, K., Kraft, S.E.J.: A faster FPTAS for the unbounded knapsack problem. In: IWOCA, Lecture Notes in Computer Science, vol. 9538, pp. 274–286. Springer (2015)

  28. Johnson, D.: Fast algorithms for bin packing. J. Comput. Syst. Sci. 8(3), 272–314 (1974)

    Article  MathSciNet  Google Scholar 

  29. Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3(4), 299–325 (1974)

    Article  MathSciNet  Google Scholar 

  30. Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: Generating adaptation policies for multi-tier applications in consolidated server environments. In: 2008 International Conference on Autonomic Computing, ICAC 2008, 2–6 June 2008, Chicago, Illinois, USA, pp. 23–32 (2008)

  31. Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., Pu, C.: A cost-sensitive adaptation engine for server consolidation of multitier applications. In: Proceedings of 10th International Middleware Conference on Middleware 2009, ACM/IFIP/USENIX, pp. 163–183 (2009)

  32. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 312–320. IEEE Computer Society (1982)

  33. Lee, C., Lee, D.: A simple on-line bin-packing algorithm. J. ACM (JACM) 32(3), 562–572 (1985)

    Article  MathSciNet  Google Scholar 

  34. Li, Y., Tang, X., Cai, W.: On dynamic bin packing for resource allocation in the cloud. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, pp. 2–11 (2014)

  35. Liang, F.: A lower bound for on-line bin packing. Inf. Process. Lett. 10(2), 76–79 (1980)

    Article  MathSciNet  Google Scholar 

  36. Park, J., Savagaonkar, U.R., Chong, E., Siegel, H., Jones, S.: Efficient resource allocation for QoS channels in MF-TDMA satellite systems. In: Proceedings of Conference on 21st Century Military Communications, MILCOM 2000, vol. 2, pp. 645–649. IEEE (2000)

  37. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res. 34(2), 481–498 (2009)

    Article  MathSciNet  Google Scholar 

  38. Seiden, S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)

    Article  MathSciNet  Google Scholar 

  39. Skutella, M., Verschae, J.: Robust polynomial-time approximation schemes for parallel machine scheduling with job arrivals and departures. Math. Oper. Res. 41(3), 991–1021 (2016)

    Article  MathSciNet  Google Scholar 

  40. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems, HotPower’08, p. 10 (2008)

  41. Stolyar, A.: An infinite server system with general packing constraints. Oper. Res. 61(5), 1200–1217 (2013)

    Article  MathSciNet  Google Scholar 

  42. Stolyar, A., Zhong, Y.: A large-scale service system with packing constraints: minimizing the number of occupied servers. In: Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, pp. 41–52. ACM (2013)

  43. Ullman, J.: The Performance of a Memory Allocation Algorithm. Technical Report. Princeton University (1971)

  44. de la Fernandez Vega, W., Lueker, G.: Bin packing can be solved within \(1+ \epsilon \) in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MathSciNet  Google Scholar 

  45. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Proceedings of the 9th International Middleware Conference on Middleware 2008, ACM/IFIP/USENIX, pp. 243–264 (2008)

  46. Vliet, A.: An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43(5), 277–284 (1992)

    Article  MathSciNet  Google Scholar 

  47. Yao, A.: New algorithms for bin packing. J. ACM (JACM) 27(2), 207–227 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Till Tantau for his valuable comments and suggestions to improve the presentation of the paper. We also thank the anonymous reviewers for their detailed and valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Berndt.

Additional information

Supported by DFG Project, Entwicklung und Analyse von effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte Optimierungsprobleme, Ja 612/14-1 and Ja 612/14-2.

A preliminary version of this work has appeared at APPROX/RANDOM 2015 as [7].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berndt, S., Jansen, K. & Klein, KM. Fully dynamic bin packing revisited. Math. Program. 179, 109–155 (2020). https://doi.org/10.1007/s10107-018-1325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1325-x

Mathematics Subject Classification

Navigation