Skip to main content
Log in

Local feature selection for multiple instance learning

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

We propose a local feature selection method for the Multiple Instance Learning (MIL) framework. Unlike conventional feature selection algorithms that assign a global set of features to the whole data set, our algorithm, called Multiple Instance Local Salient Feature Selection (MI-LSFS), searches the feature space to find the relevant features within each bag. We also propose a new multiple instance classification algorithm, called Multiple Instance Learning via Embedded Structures with Local Feature Selection (MILES-LFS), by integrating the information learned by MI-LSFS during the feature selection process. In MILES-LFS, we use information learned by MI-LSFS to identify a reduced subset of representative bags. For each representative bag, we identify its most representative instances. Using the instance prototypes of all representative bags and their relevant features, we project and map the MIL data to a standard feature vector data. Finally, we train a 1-Norm support vector machine (1-Norm SVM) to learn the classifier. We investigate the performance of MI-LSFS in selecting the local relevant features using synthetic and benchmark data sets. The results confirm that MI-LSFS can identify the relevant features for each bag. We also investigate the performance of the proposed MILES-LFS algorithm on several synthetic and real benchmark data sets. The results confirm that MILES-LFS has a robust classification performance comparable to the well-known MILES algorithm. More importantly, our results confirm that using the reduced set of prototypes to project the MIL data reduces the computational time significantly without affecting the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Amores, J. (2013). Multiple instance classification: review, taxonomy and comparative study. Artificial Intelligence, 201, 81–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Andrews, S., Tsochantaridis, I., & Hofmann, T. (2003). Support vector machines for multiple-instance learning. In Advances in neural information processing systems (pp. 577–584).

  • Ang, J.C, Mirzal, A., Haron, H., & Hamed, H.N.A. (2015). Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(5), 971–989.

    Article  Google Scholar 

  • Arai, H., Maung, C., Xu, K., & Schweitzer, H. (2016). Unsupervised feature selection by heuristic search with provable bounds on suboptimality. In Proceedings of the Thirtieth AAAI conference on artificial intelligence (pp. 666–672).

  • Archibald, R., & Fann, G. (2007). Feature selection and classification of hyperspectral images with support vector machines. IEEE Geoscience and Remote Sensing Letters, 4(4), 674–677.

    Article  Google Scholar 

  • Armanfard, N., Reilly, J.P., & Komeili, M. (2015). Local feature selection for data classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6), 1217–1227.

    Article  Google Scholar 

  • Armanfard, N., Reilly, J.P., & Komeili, M. (2018). Logistic localized modeling of the sample space for feature selection and classification. IEEE Transactions on Neural Networks and Learning Systems, 29(5), 1396–1413.

    Article  MathSciNet  Google Scholar 

  • Battiti, R. (1994). Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5(4), 537–550.

    Article  Google Scholar 

  • Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and Information Systems, 34(3), 483–519.

    Article  Google Scholar 

  • Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University press.

  • Chai, J., Chen, H., Huang, L., & Shang, F. (2014). Maximum margin multiple-instance feature weighting. Pattern Recognition, 47(6), 2091–2103.

    Article  Google Scholar 

  • Chai, J., Chen, Z., Chen, H., & Ding, X. (2016). Designing bag-level multiple-instance feature-weighting algorithms based on the large margin principle. Information Sciences, 367, 783–808.

    Article  Google Scholar 

  • Chen, B., Liu, H., Chai, J., & Bao, Z. (2008). Large margin feature weighting method via linear programming. IEEE Transactions on Knowledge and Data Engineering, 21(10), 1475–1488.

    Article  Google Scholar 

  • Chen, Y., Bi, J., & Wang, J.Z. (2006). Miles: Multiple-instance learning via embedded instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1931–1947.

    Article  Google Scholar 

  • Dietterich, T. G., Lathrop, R.H., & Lozano-Pérez, T. (1997). Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89 (1-2), 31–71.

    Article  MATH  Google Scholar 

  • Faris, H., Hassonah, M.A., Ala’m, A.Z., Mirjalili, S., & Aljarah, I. (2018). A multi-verse optimizer approach for feature selection and optimizing svm parameters based on a robust system architecture. Neural Computing and Applications, 30 (8), 2355–2369.

    Article  Google Scholar 

  • Fleuret, F. (2004). Fast binary feature selection with conditional mutual information. Journal of Machine learning research, 5, 1531–1555.

    MathSciNet  MATH  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning Vol. 1. New York: Springer Series in Statistics.

    MATH  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.

    MATH  Google Scholar 

  • Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L.A. (2008). Feature extraction: foundations and applications Vol. 207. Berlin: Springer.

    Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389–422.

    Article  MATH  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  MATH  Google Scholar 

  • Jolliffe, I. T. (1986). Principal components in regression analysis. In Principal component analysis (pp. 129–155). Springer.

  • Karem, A., Trabelsi, M., Moalla, M., & Frigui, H. (2018). Comparison of several single and multiple instance learning methods for detecting buried explosive objects using gpr data. In Detection and sensing of mines, explosive objects, and obscured targets XXIII, (Vol. 10628 p. 106280G). International Society for Optics and Photonics.

  • Kim, S., & Choi, S. (2010). Local dimensionality reduction for multiple instance learning. In 2010 IEEE International workshop on machine learning for signal processing (pp. 13–18). IEEE.

  • Kira, K., & Rendell, L.A. (1992). A practical approach to feature selection. In Machine Learning Proceedings 1992 (pp. 249–256). Elsevier.

  • Kohavi, R., John, G. H., & et al. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273–324.

    Article  MATH  Google Scholar 

  • Kononenko, I. (1994). Estimating attributes: analysis and extensions of relief. In European conference on machine learning (pp. 171–182). Springer.

  • Kumar, V., & Minz, S. (2014). Feature selection: a literature review. SmartCR, 4(3), 211–229.

    Article  Google Scholar 

  • Lango, M., & Stefanowski, J. (2018). Multi-class and feature selection extensions of roughly balanced bagging for imbalanced data. Journal of Intelligent Information Systems, 50(1), 97–127.

    Article  Google Scholar 

  • Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., de Schaetzen, V., Duque, R., Bersini, H., & Nowe, A. (2012). A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 9(4), 1106–1119.

    Article  Google Scholar 

  • LeCun, Y., Cortes, C., & Burges, C.J. (1998). The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist10(34), 14.

  • Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., & Liu, H. (2017a). Feature selection: a data perspective. ACM Computing Surveys (CSUR), 50(6), 1–45.

    Article  Google Scholar 

  • Li, Y., Li, T., & Liu, H. (2017b). Recent advances in feature selection and its applications. Knowledge and Information Systems, 53(3), 551–577.

    Article  Google Scholar 

  • Lim, H., & Kim, D. W. (2020). Mfc: Initialization method for multi-label feature selection based on conditional mutual information. Neurocomputing, 382, 40–51.

    Article  Google Scholar 

  • Maron, O., & Lozano-Pérez, T. (1998). A framework for multiple-instance learning. In Advances in neural information processing systems (pp. 570–576).

  • Matthews, B.W. (1975). Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), 442–451.

    Article  Google Scholar 

  • Neumann, J., Schnörr, C., & Steidl, G. (2005). Combined svm-based feature selection and classification. Machine Learning, 61(1-3), 129–150.

    Article  MATH  Google Scholar 

  • Qi, X., & Han, Y. (2007). Incorporating multiple svms for automatic image annotation. Pattern Recognition, 40(2), 728–741.

    Article  MATH  Google Scholar 

  • Rand, W.M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336), 846–850.

    Article  Google Scholar 

  • Raykar, V.C., Krishnapuram, B., Bi, J., Dundar, M., & Rao, R.B. (2008). Bayesian multiple instance learning: automatic feature selection and inductive transfer. In Proceedings of the 25th international conference on machine learning (pp. 808–815).

  • Saeys, Y., Abeel, T., & Van de Peer, Y. (2008). Robust feature selection using ensemble feature selection techniques. In Joint european conference on machine learning and knowledge discovery in databases (pp. 313–325). Springer.

  • Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517.

    Article  Google Scholar 

  • Safta, W., Farhangi, M.M., Veasey, B., Amini, A., & Frigui, H. (2019). Multiple instance learning for malignant vs. benign classification of lung nodules in thoracic screening ct data. In 2019 IEEE 16Th international symposium on biomedical imaging (ISBI 2019) (pp. 1220–1224).

  • Sayed, S., Nassef, M., Badr, A., & Farag, I. (2019). A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Systems with Applications, 121, 233–243.

    Article  Google Scholar 

  • Shishkin, A., Bezzubtseva, A., Drutsa, A., Shishkov, I., Gladkikh, E., Gusev, G., & Serdyukov, P. (2016). Efficient high-order interaction-aware feature selection based on conditional mutual information. In Advances in neural information processing systems (pp. 4637–4645).

  • Sun, Y. (2007). Iterative relief for feature weighting: algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1035–1051.

    Article  Google Scholar 

  • Sun, Y. Y., Ng, M. K., & Zhou, Z. H. (2010). Multi-instance dimensionality reduction. In AAAI. Citeseer.

  • Tafazzoli, F., & Frigui, H. (2016). Vehicle make and model recognition using local features and logo detection. In 2016 International symposium on signal, image, video and communications (ISIVC) (pp. 353–358). IEEE.

  • Tai, L. K., Setyonugroho, W., & Chen, A. L. (2020). Finding discriminatory features from electronic health records for depression prediction. Journal of Intelligent Information Systems, 55(2), 371–396.

    Article  Google Scholar 

  • Tan, F., Fu, X., Zhang, Y., & Bourgeois, A. G. (2008). A genetic algorithm-based method for feature subset selection. Soft Computing, 12(2), 111–120.

    Article  Google Scholar 

  • Torkkola, K. (2003). Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3(Mar), 1415–1438.

    MathSciNet  MATH  Google Scholar 

  • Uġuz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowledge-Based Systems, 24(7), 1024–1032.

    Article  Google Scholar 

  • Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of Biomedical Informatics, 85, 189–203.

    Article  Google Scholar 

  • Wang, J., & Zucker J.D. (2000). Solving multiple-instance problem: A lazy learning approach.

  • Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10(2).

  • Yang, Y., Shen, H. T., Ma, Z., Huang, Z., & Zhou, X. (2011). L 2, 1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI International joint conference on artificial intelligence.

  • Yuan, X., Hua, X. S., Wang, M., Qi, G. J., & Wu, X. Q. (2007). A novel multiple instance learning approach for image retrieval based on adaboost feature selection. In 2007 IEEE International conference on multimedia and expo (pp. 1491–1494). IEEE.

  • Zafra, A., Pechenizkiy, M., & Ventura, S. (2012). Relieff-mi: an extension of relieff to multiple instance learning. Neurocomputing, 75(1), 210–218.

    Article  Google Scholar 

  • Zafra, A., Pechenizkiy, M., & Ventura, S. (2013). Hydr-mi: a hybrid algorithm to reduce dimensionality in multiple instance learning. Information Sciences, 222, 282–301.

    Article  MathSciNet  Google Scholar 

  • Zhang, M. L., & Zhou, Z. H. (2004). Improve multi-instance neural networks through feature selection. Neural Processing Letters, 19(1), 1–10.

    Article  Google Scholar 

  • Zhou, Z. H., & Zhang, M. L. (2002). Neural networks for multi-instance learning. In Proceedings of the International Conference on Intelligent Information Technology (pp. 455–459). Beijing.

  • Zhu, H., Liao, L. Z., & Ng, M. K. (2018). Multi-instance dimensionality reduction via sparsity and orthogonality. Neural Computation, 30(12), 3281–3308.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, J., Rosset, S., Tibshirani, R., & Hastie, T.J. (2004). 1-norm support vector machines. In Advances in neural information processing systems (pp. 49–56).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Shahrjooihaghighi.

Additional information

Availability of data and material

The data sets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrjooihaghighi, A., Frigui, H. Local feature selection for multiple instance learning. J Intell Inf Syst 59, 45–69 (2022). https://doi.org/10.1007/s10844-021-00680-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-021-00680-7

Keywords

Navigation