Skip to main content
Log in

The adjacent vertex distinguishing total chromatic numbers of planar graphs with \(\Delta =10\)

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

A (proper) total-k-coloring of a graph G is a mapping \(\phi : V (G) \cup E(G)\mapsto \{1, 2, \ldots , k\}\) such that any two adjacent elements in \(V (G) \cup E(G)\) receive different colors. Let C(v) denote the set of the color of a vertex v and the colors of all incident edges of v. A total-k-adjacent vertex distinguishing-coloring of G is a total-k-coloring of G such that for each edge \(uv\in E(G)\), \(C(u)\ne C(v)\). We denote the smallest value k in such a coloring of G by \(\chi ''_{a}(G)\). It is known that \(\chi _{a}''(G)\le \Delta (G)+3\) for any planar graph with \(\Delta (G)\ge 11\). In this paper, we show that if G is a planar graph with \(\Delta (G)\ge 10\), then \(\chi _{a}''(G)\le \Delta (G)+3\). Our approach is based on Combinatorial Nullstellensatz and the discharging method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Alon N (1999) Combinatorial Nullstellensatz. Comb Probab Comput 8:7–29

    Article  MathSciNet  MATH  Google Scholar 

  • Appel K, Haken W, Koch J (1977) Every planar graph map is four colorable. Part II: reducibility. Ill J Math 21:491–567

    MATH  Google Scholar 

  • Appel K, Haken W (1977) Every planar graph map is four colorable. Part I: discharging. Ill J Math 21:429–490

    MATH  Google Scholar 

  • Bondy J, Murty U (1976) Graph theory with applications. North-Holland, New York

    Book  MATH  Google Scholar 

  • Chen X (2008) On the adjacent vertex distinguishing total coloring numbers of graphs with \(\Delta = 3\). Discret Math 308(17):4003–4007

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng X, Huang D, Wang G, Wu J (2015) Neighbor sum distinguishing total colorings of planar graphs with maximum degree \(\Delta \). Discret Appl Math 190–191:34–41

    Article  MathSciNet  MATH  Google Scholar 

  • Coker T, Johannson K (2012) The adjacent vertex distinguishing total chromatic number. Discret Math 312(17):2741–2750

    Article  MathSciNet  MATH  Google Scholar 

  • Ding L, Wang G, Yan G (2014) Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz. Sci Sin Math 57(9):1875–1882

    MathSciNet  MATH  Google Scholar 

  • Dong A, Wang G (2014) Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree. Acta Math Sinica 30(4):703–709

    Article  MathSciNet  MATH  Google Scholar 

  • Huang D, Wang W, Yan C (2012) A note on the adjacent vertex distinguishing total chromatic number of graphs. Discret Math 312(24):3544–3546

    Article  MathSciNet  MATH  Google Scholar 

  • Huang D, Wang W (2012) Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree. Sci Sin Math 42(2):151–164 (in Chinese)

    Article  Google Scholar 

  • Li H, Liu B, Wang G (2013) Neighbor sum distinguishing total colorings of \(K_4\)-minor free graphs. Front Math China 8(6):1351–1366

    Article  MathSciNet  MATH  Google Scholar 

  • Li H, Ding L, Liu B, Wang G (2015) Neighbor sum distinguishing total colorings of planar graphs. J Comb Optim 30(3):675–688

    Article  MathSciNet  MATH  Google Scholar 

  • Pilśniak M, Woźniak M (2015) On the total-neighbor-distinguishing index by sums. Graphs Comb 31(3):771–782

    Article  MathSciNet  MATH  Google Scholar 

  • Sanders D, Zhao Y (2001) Planar graphs of maximum degree seven are class I. J Comb Theory B 83:201–212

    Article  MathSciNet  MATH  Google Scholar 

  • Vizing V (1964) On an estimate of the chromatic index of a \(p\)-graph. Metody Diskret Analiz 3:25–30 (in Russian)

    Google Scholar 

  • Wang H (2007) On the adjacent vertex distinguishing total chromatic number of the graphs with \(\Delta (G)=3\). J Comb Optim 14:87–109

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Huang D (2014) The adjacent vertex distinguishing total coloring of planar graphs. J Comb Optim 27(2):379–396

    Article  MathSciNet  MATH  Google Scholar 

  • Wang W, Wang P (2009) On adjacent-vertex-distinguishing total coloring of \(K_4\)-minor free graphs. Sci China Ser A 39(12):1462–1472

    Google Scholar 

  • Wang Y, Wang W (2010) Adjacent vertex distinguishing total colorings of outerplanar graphs. J Comb Optim 19:123–133

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Chen X, Li J, Yao B, Lu X, Wang J (2005) On adjacent-vertex-distinguishing total coloring of graphs. Sci China Ser A 48(3):289–299

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11271006, 11371355, 11471193, 11501316), the Foundation for Distinguished Young Scholars of Shandong Province (JQ201501), the Shandong Provincial Natural Science Foundation of China (ZR2014AQ001), and the Independent Innovation Foundation of Shandong University (IFYT 14012, IFYT 14013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Wang.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Wang, G. & Wu, J. The adjacent vertex distinguishing total chromatic numbers of planar graphs with \(\Delta =10\) . J Comb Optim 34, 383–397 (2017). https://doi.org/10.1007/s10878-016-9995-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-016-9995-x

Keywords

Navigation