Skip to main content
Log in

Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate a scheme for nonlinear reaction-diffusion equations using the mixed finite element methods. To linearize the mixed method equations, we use the two-grid algorithm. First, we solve the original nonlinear equations on the coarse grid, then, we solve the linearized problem on the fine grid used Newton iteration once. It is shown that the algorithm can achieve asymptotically optimal approximation as long as the mesh sizes satisfy \(H=\mathcal{O}(h^{\frac{1}{2}})\). As a result, solving such a large class of nonlinear equations will not much more difficult than the solution of one linearized equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbogast, T., Wheeller, M.F., Yotov, I.: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 32, 828–852 (1997)

    Article  Google Scholar 

  2. Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y., Huang, Y.: A multilevel method for finite element solutions for singular two-point boundary value problems. Nat. Sci. J. Xiangtan Univ., 16, 23–26 (1994) (in Chinese)

    MATH  Google Scholar 

  4. Chen, Y., Li, L.: L p error estimates of two-grid schemes of expanded mixed finite element methods. Appl. Math. Comput. 209, 197–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Huang, Y., Yu, D.: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. Int. J. Numer. Methods Eng. 57, 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y., Liu, H., Liu, S.: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. Int. J. Numer. Methods Eng. 69, 408–422 (2007)

    Article  MATH  Google Scholar 

  7. Chen, Y., Luan, P., Lu, Z.: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods. Adv. Appl. Math. Mech. 1, 1–15 (2009)

    MathSciNet  Google Scholar 

  8. Douglas, J. Jr., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Mat. Appl. Comput. 1, 91–103 (1982)

    MathSciNet  MATH  Google Scholar 

  9. Douglas, J. Jr., Roberts, J.E.: Global estimates for mixed finite element methods for second order elliptic equations. Math. Comput. 44, 39–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO. Anal. Numèr. 17, 17–33 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Dawson, C.N., Wheeler, M.F.: Two-grid method for mixed finite element approximations of non-linear parabolic equations. Contemp. Math. 180, 191–203 (1994)

    MathSciNet  Google Scholar 

  12. Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garcia, M.F.: Improved error estimates for mixed finite element approximations for nonlinear parabolic equations: the continuously-time case. Numer. Methods Partial Differ. Equ., 10, 129–149 (1994)

    Article  MATH  Google Scholar 

  14. Huyakorn, P.S., Pinder, G.F.: Computational Methods in Surface Flow. Academic Press, New York (1983)

    Google Scholar 

  15. Murray, J.: Mathematical Biology, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  16. Squeff, M.C.J.: Superconvergence of mixed finite elements for parabolic equations. Math. Model. Numer. Anal. 21, 327–352 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Math. Aspects of the Finite Element Method. Lecture Notes in Math., vol. 606, pp. 292–315. Springer, Berlin (1977)

    Chapter  Google Scholar 

  18. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  19. Wu, L., Allen, M.B.: A two-grid method for mixed finite element solution of reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 15, 317–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, J.: A novel two-grid method for semilinear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, J.: Two-grid discretization techniques for linear and non-linear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu, J., Zhang, Y.T., Stuart, A.N., Mark, A.: Application of discontinuous Galerkin methods for reaction diffusion systems in developmental biology. J. Sci. Comput. 40, 391–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Chen, Y. Two-Grid Method for Nonlinear Reaction-Diffusion Equations by Mixed Finite Element Methods. J Sci Comput 49, 383–401 (2011). https://doi.org/10.1007/s10915-011-9469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9469-3

Keywords

Navigation