Skip to main content
Log in

Analyzing concept complexity, knowledge ageing and diffusion pattern of Mooc

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Massive open online course (Mooc) is an educational technology that involves both education and technological innovation. The past investigations of Mooc are very limited in research methodologies for this interdisciplinary research field. Using social network analysis, bibliometrics, text mining and idea of epidemic model, this work quantitatively measures, analyzes and compares Mooc research papers’ concept complexity, knowledge ageing rate and Mooc diffusion pattern at international and country-specific levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, B., & Levine, A. (2008). Web 2.0 storytelling: Emergence of a new genre. EDUCAUSE Review, 43(6), 40–56. Retrieved February, 10, 2017 from http://er.educause.edu/~/media/files/article-downloads/erm0865.pdf.

  • Andersen, P. (2007). What is web 2.0? Ideas, technologies and implications for education. UK: Joint Information Systems Committee (JISC). Retrieved February, 12, 2017 from http://21stcenturywalton.pbworks.com/f/What%20is%20Web%202.0.pdf.

  • Anohah, E., Oyelere, S. S., & Suhonen, J. (2017). Trends of mobile learning in Computing Education from 2006 to 2014: A systematic review of research publications. International Journal of Mobile and Blended Learning, 9(1), 16–33. doi:10.4018/IJMBL.2017010102.

    Article  Google Scholar 

  • Baran, E. (2014). A review of research on mobile learning in teacher education. Educational Technology & Society, 17(4), 17–32. Retrieved February, 11, 2017 from http://www.jstor.org/stable/jeductechsoci.17.4.17.

  • Beaudry, C., & Allaoui, S. (2012). Impact of public and private research funding on scientific production: The case of nanotechnology. Research Policy, 41(9), 1589–1606. doi:10.1016/j.respol.2012.03.022.

    Article  Google Scholar 

  • Burton, R. E., & Kebler, R. W. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22. doi:10.1002/asi.5090110105.

    Article  Google Scholar 

  • Conole, G., & Alevizou, P. (2010). A literature review of the use of web 2.0 tools in Higher Education. A report commissioned by the Higher Education Academy. York: HEA Academy. Retrieved February, 9, 2017, from https://www.heacademy.ac.uk/system/files/conole_alevizou_2010.pdf.

  • Cunningham, S. J., & Bocock, D. (1995). Obsolescence of computing literature. Scientometrics, 34(2), 255–262. doi:10.1007/BF02020423.

    Article  Google Scholar 

  • de Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dede, C. (2008). A seismic shift in epistemology. EDUCAUSE Review, 43(3), 80–81. Retrieved February, 12, 2017, from https://net.educause.edu/ir/library/pdf/ERM0837.pdf.

  • Ebben, M., & Murphy, J. S. (2014). Unpacking MOOC scholarly discourse: A review of nascent MOOC scholarship. Learning, Media and Technology, 39(3), 328–345. doi:10.1080/17439884.2013.878352.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2000). Aging, obsolescence, impact, growth, and utilization: Definitions and relations. Journal of the American Society for Information Science, 51(11), 1004–1017. doi:10.1002/1097-4571(2000)9999:9999%3C::AID-ASI1003%3E3.0.CO;2-8.

    Article  Google Scholar 

  • Garfield, E. (1980). The epidemiology of knowledge and the spread of scientific-information. Current Contents, 35, 5–10. Retrieved October, 8, 2016, http://www.garfield.library.upenn.edu/essays/v4p586y1979-80.pdf.

  • Gasevic, D., Kovanovic, V., Joksimovic, S., & Siemens, G. (2014). Where is research on massive open online courses headed? A data analysis of the MOOC research initiative. The International Review of Research in Open and Distributed Learning, 15(5), 134–176. http://www.irrodl.org/index.php/irrodl/article/view/1954.

  • Glänzel, W., & Schoepflin, U. (1995). A bibliometric study on ageing and reception processes of scientific literature. Journal of Information Science, 21(1), 37–53. doi:10.1177/016555159502100104.

    Article  Google Scholar 

  • Glossary of education terms (2016). Retrieved October 2, 2016, from https://en.wikipedia.org/wiki/Glossary_of_education_terms.

  • Goffman, W. (1966). Mathematical approach to the spread of scientific ideas–the history of mast cell research. Nature, 212(5061), 449–452. doi:10.1038/212449a0.

    Article  Google Scholar 

  • Goffman, W., & Harmon, G. (1971). Mathematical approach to the prediction of scientific discovery. Nature, 229(5280), 103–104. doi:10.1038/229103a0.

    Article  Google Scholar 

  • Goffman, W., & Newill, V. A. (1964). Generalization of epidemic theory. Nature, 204(4955), 225–228. doi:10.1038/204225a0.

    Article  Google Scholar 

  • Gore, H. (2014). Massive open online courses (MOOCs) and their impact on academic library services: Exploring the issues and challenges. New Review of Academic Librarianship, 20(1), 4–28. doi:10.1080/13614533.2013.851609.

    Article  Google Scholar 

  • Greenhow, C., Robelia, B., & Hughes, J. E. (2009). Learning, teaching, and scholarship in a digital age web 2.0 and classroom research: What path should we take now? Educational Researcher, 38(4), 246–259. doi:10.3102/0013189X09336671.

    Article  Google Scholar 

  • Guo, P. J., & Reinecke, K. (2014). Demographic differences in how students navigate through MOOCs. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 21–30). New York, USA: ACM. doi: 10.1145/2556325.2566247.

  • Gupta, B., Sharma, L., & Karisiddappa, C. (1995). Modelling the growth of papers in a scientific specialty. Scientometrics, 33(2), 187–201. doi:10.1007/BF02020568.

    Article  Google Scholar 

  • Hansen, J. D., & Reich, J. (2015). Democratizing education? Examining access and usage patterns in massive open online courses. Science, 350(6265), 1245–1248. doi:10.1126/science.aab3782.

    Article  Google Scholar 

  • Heisey, T. M. (1988). Paradigm agreement and literature obsolescence: a comparative study in the literature of the dead Sea Scrolls. Journal of Documentation, 44(4), 285–301. doi:10.1108/eb026831.

    Article  Google Scholar 

  • Hendricks, K. B., & Singhal, V. R. (1997). Does implementing an effective TQM program actually improve operating performance? Empirical evidence from firms that have won quality awards. Management Science, 43(9), 1258–1274. doi:10.1287/mnsc.43.9.1258.

    Article  MATH  Google Scholar 

  • Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45–58. doi:10.1016/j.edurev.2014.05.001.

    Article  Google Scholar 

  • Ho, A. D., et al. (2015). HarvardX and MITx: Two years of open online courses fall 2012-summer 2014. (HarvardX and MITx Working Paper). doi: 10.2139/ssrn.2586847.

  • Ho, A. D., Reich, J., Nesterko, S., Seaton, D. T., Mullaney, T., Waldo, J., & Chuang, I. (2014). HarvardX and MITx: The first year of open online courses (HarvardX and MITx Working Paper No. 1). doi: 10.2139/ssrn.2381263.

  • Hung, J. L., & Zhang, K. (2012). Examining mobile learning trends 2003–2008: A categorical meta-trend analysis using text mining techniques. Journal of Computing in Higher education, 24(1), 1–17. doi:10.1007/s12528-011-9044-9.

    Article  Google Scholar 

  • Jacoby, J. (2014). The disruptive potential of the Massive Open Online Course: A literature review. Journal of Open, Flexible and Distance Learning, 18(1), 73–85. Retrieved February 16, 2017, from http://search.informit.com.au/documentSummary;dn=871846541311382;res=IELHSS.

  • Jaffe, A. B. (1989). Real effects of academic research. The American Economic Review, 79(5), 957–970. Retrieved October 9, 2016, from http://www.jstor.org/stable/1831431.

  • Kukulska-Hulme, A., & Traxler, J. (2005). Mobile learning: A handbook for educators and trainers. London: Routledge.

    Google Scholar 

  • Larivière, V., Archambault, É., & Gingras, Y. (2008). Long-term variations in the aging of scientific literature: From exponential growth to steady-state science (1900–2004). Journal of the American Society for Information Science and Technology, 59(2), 288–296. doi:10.1002/asi.20744.

    Article  Google Scholar 

  • Laxtek. (2000). Stop word list. Retrieved Oct 1, 2016, from http://www.lextek.com/manuals/onix/stopwords1.html.

  • Lindsey, D. (1978). The scientific publication system in social science. San Francisco and London: Jossey-Bass Inc Pub.

    Google Scholar 

  • Line, M. B. (1970). The ‘half-life’ of periodical literature: Apparent and real obsolescence. Journal of Documentation, 26(1), 46–54. doi:10.1108/eb026486.

    Article  Google Scholar 

  • Liyanagunawardena, T. R., Adams, A. A., & Williams, S. A. (2013). MOOCs: A systematic study of the published literature 2008–2012. The International Review of Research in Open and Distributed Learning, 14(3), 202–227. doi:10.19173/irrodl.v14i3.1455.

    Article  Google Scholar 

  • Lopez-Meneses, E., Vazquez-Cano, E., & Roman, P. (2015). Analysis and implications of the impact of MOOC movement in the scientific community: JCR and scopus (2010–2013). Comunicar, 22(44), 73–80. doi:10.3916/C44-2015-08.

    Article  Google Scholar 

  • Lowenthal, P., & Hodges, C. (2015). In search of quality: Using quality matters to analyze the quality of massive, open, online courses (MOOCs). The International Review of Research in Open and Distributed Learning, 16(5), 83–101. doi:10.19173/irrodl.v16i5.2348.

    Article  Google Scholar 

  • Martín-Martín, A., Orduna-Malea, E., Ayllón, J. M., & López-Cózar, E. D. (2016). Back to the past: On the shoulders of an academic search engine giant. Scientometrics, 107(3), 1477–1487. doi:10.1007/s11192-016-1917-2.

    Article  Google Scholar 

  • McLoughlin, C., & Lee, M. J. (2007). Social software and participatory learning: Pedagogical choices with technology affordances in the web 2.0 era. In R. J. Atkinson, C. McBeath, S. K. A. Soong & C. Cheers (Eds.), ICT: Providing choices for learners and learning. Paper presented at Centre for Educational Development, Nanyang Technological University, Singapore, 2–5 December (pp. 664–675). Retrieved February 12, 2017, from http://www.ascilite.org/conferences/singapore07/procs/mcloughlin.pdf.

  • McNutt, M. (2013). Bricks and MOOCs. Science, 342(6157), 402. doi:10.1126/science.1246943.

    Article  Google Scholar 

  • Mervis, J. (2013). How long can the US stay on top? Science, 340(6139), 1394–1399. doi:10.1126/science.340.6139.1394.

    Article  Google Scholar 

  • Milojević, S., Sugimoto, C. R., Yan, E., & Ding, Y. (2011). The cognitive structure of library and information science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933–1953. doi:10.1002/asi.21602.

    Article  Google Scholar 

  • Nelson, A. J. (2009). Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion. Research Policy, 38(6), 994–1005. doi:10.1016/j.respol.2009.01.023.

    Article  Google Scholar 

  • Pappano, L. (2012). The year of the MOOC. The New York Times. Retrieved October 2, 2016, from http://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html?_r=0.

  • Parker, E. B., Paisley, W. J., & Garret, R. (1967). Bibliographic citations as unobtrusive measures of scientific communication. Stanford, CA: Institute for Communication Research, Stanford University.

    Google Scholar 

  • Peritz, B. C. (1983). A classification of citation roles for the social sciences and related fields. Scientometrics, 5(5), 303–312. doi:10.1007/BF02147226.

    Article  Google Scholar 

  • Pilli, O., & Admiraal, W. (2016). A taxonomy of massive open online courses. Contemporary Educational Technology, 7(3), 223–240. Retrieved October 3, 2016, from http://dergipark.gov.tr/download/article-file/252279.

  • Porter algorithm (2006). Retrieved October 1, 2016, from https://tartarus.org/martin/PorterStemmer.

  • Price, D. J. (1970). Citation measures of hard science, soft science, technology, and nonscience. In C. E. Nelson & D. K. Pollack (Eds.), Communication among scientists and engineers (pp. 3–22). Lexington, MA: Heath.

    Google Scholar 

  • Price, D. J. (1980). The citation cycle. In B. C. Griffith (Ed.), Key papers in information science (pp. 195–210). New York: Knowledge Industry Publication.

    Google Scholar 

  • Rogers, E. M. (2010). Diffusion of innovations. New York: Simon and Schuster.

    Google Scholar 

  • Romero, C., & Ventura, S. (2017). Educational data science in massive open online courses. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(1), e1187. doi:10.1002/widm.1187.

    Google Scholar 

  • Rosselle, M., Caron, P. A., & Heutte, J. (2014). A typology and dimensions of a description framework for MOOCs. In U. Cress & C. D. Kloos (Eds.), Proceedings of the European MOOC Stakeholder Summit 2014, Paper presented at European MOOCs Stakeholders Summit 2014, eMOOCs 2014, Lausanne, France (pp. 130–139). Proceedings document published in collaboration with eLearning Papers, a digital publication on eLearning by Open Education Europa. Retrieved February 15, 2017, from https://hal.archives-ouvertes.fr/hal-00957025.

  • Ruhl, M. J. (1964). Chemical documents and their titles: Human concept indexing vs. KWIC-Machine Indexing, American Documentation, 15(2), 136–141. doi:10.1002/asi.5090150213.

    Article  Google Scholar 

  • Sanchez-Gordon, S., & Luján-Mora, S. (2014). MOOCs gone wild. Paper presented at the Proceedings of the 8th International Technology, Education and Development Conference (INTED 2014). Valencia, Spain. 10–12 March (pp. 1449–1458). Retrieved October 2, 2016, from http://desarrolloweb.dlsi.ua.es/moocs/moocs-gone-wild.

  • Singer, S. R., & Bonvillian, W. B. (2013). Two revolutions in learning. Science, 339(6126), 1359. doi:10.1126/science.1237223.

    Article  Google Scholar 

  • Solomon, G., & Schrum, L. (2007). Web 2.0: New tools, new schools. Washington, DC: International Society for Technology in Education.

    Google Scholar 

  • Song, Y., Ma, F., & Yang, S. (2015). Comparative study on the obsolescence of humanities and social sciences in China: under the new situation of web. Scientometrics, 102(1), 365–388. doi:10.1007/s11192-014-1410-8.

    Article  Google Scholar 

  • Veletsianos, G., & Shepherdson, P. (2015). Who studies MOOCs? Interdisciplinarity in MOOC research and its changes over time. The International Review of Research in Open and Distributed Learning, 16(3), 1–17. doi:10.19173/irrodl.v16i3.2202.

    Article  Google Scholar 

  • Veletsianos, G., & Shepherdson, P. (2016). A systematic analysis and synthesis of the empirical MOOC literature published in 2013–2015. The International Review of Research in Open and Distributed Learning, 17(2), 198–221. doi:10.19173/irrodl.v17i2.2448.

    Article  Google Scholar 

  • Verstak, A., Acharya, A., Suzuki, H., Henderson, S., Iakhiaev, M., Lin, C. C. Y., & Shetty, N. (2014). On the shoulders of giants: The growing impact of older articles. Retrieved October 9, 2016, from https://arxiv.org/abs/1411.0275.

  • Wallace, S. (2015). A dictionary of education. Oxford: Oxford University Press.

    Google Scholar 

  • Webopedia (2016). Information technology and computing definitions. Retrieved October 10, 2016, from http://www.webopedia.com/.

  • Whittaker, J. (1989). Creativity and conformity in science: Titles, keywords and co-word analysis. Social Studies of Science, 19(3), 473–496. doi:10.1177/030631289019003004.

    Article  MathSciNet  Google Scholar 

  • Wu, W. H., Wu, Y. C. J., Chen, C. Y., Kao, H. Y., Lin, C. H., & Huang, S. H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817–827. doi:10.1016/j.compedu.2012.03.016.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shesen Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhang, G. Analyzing concept complexity, knowledge ageing and diffusion pattern of Mooc. Scientometrics 112, 413–430 (2017). https://doi.org/10.1007/s11192-017-2385-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2385-z

Keywords

Navigation