Skip to main content

The Rank and Coexponent of a Finite P-Group

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, we present a sharp bound for the rank of a finite p-group in terms of its coexponent. As to finite p-groups with p odd, we also give a sufficient condition for which the normal rank is equal to its rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Sanders, Prime-Power Lie Algebras and Finite-p-Groups, PhD thesis, University of Warwick, 1994.

  2. P. J. Sanders, The coexponent of a regular p-group, Comm. Algebra, 2000, 28(3): 1309–1333.

    Google Scholar 

  3. H. Bai, Y. J. Ma, J. P. Zhang, The coexponent of a finite p-group, Comm. Algebra, 2003, 31(7): 3497–3504.

    Article  Google Scholar 

  4. M. Konvisser, D. Jonah, Counting abelian subgroups of p-groups: A projective approach, J. Algebra, 1975, 34: 309–330.

    Article  Google Scholar 

  5. J. G. Berkovic, A certain nonregular p-group(Russian), Sibirsk. Math. Z, 1971, 12: 907–911.

    Google Scholar 

  6. J. L. Alperin, Large abelian subgroups of p-groups, Trans. Amer. Math. Soc., 1965, 117: 10–20.

    Google Scholar 

  7. J. L. Alperin, G. Glauberman, Limits of abelian subgroups of finite p-groups, J. Algebra, 1998, 203: 533–566.

    Article  Google Scholar 

  8. G. Glauberman, Large abelian subgroups of groups of prime exponent, J. Algebra, 2001, 237: 735–768.

    Article  Google Scholar 

  9. L. K. Hua, Some “Anzahl” theorems for groups for prime power order, Sci. Rep. Nat. Tsing-Hua Univ.(A), 1947, 4(4–6): 313–327.

  10. A. Lubotzky, A. Mann, Powerful p-groups, I. Finite groups, J. Algebra, 1987, 105: 484–505.

    Google Scholar 

  11. B. Huppert, Endliche Gruppen I, Springer-Verlag: Berlin-Heidelberg-New York, 1967.

    Google Scholar 

  12. M. Aschbacher, Finite Group Theory, 2nd edition, Cambridge Studies in Advanced Mathematics, Vol. 10, Cambridge University Press, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Ma.

Additional information

The author is partially supported by the National Key Basic Research Science Foundation of China (No. 2004CB318000) and the National Natural Science Foundation of China (No. 10301032).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y. The Rank and Coexponent of a Finite P-Group. Jrl Syst Sci & Complex 19, 88–92 (2006). https://doi.org/10.1007/s11424-006-0088-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-006-0088-2

Key Words