Skip to main content
Log in

On Isodual Double Toeplitz Codes

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Double Toeplitz (shortly DT) codes are introduced here as a generalization of double circulant codes. The authors show that such a code is isodual, hence formally self-dual (FSD). FSD codes form a far-reaching generalization of self-dual codes, the most important class of codes of rate one-half. Self-dual DT codes are characterized as double circulant or double negacirculant. Likewise, even binary DT codes are characterized as double circulant. Numerical examples obtained by exhaustive search show that the codes constructed have best-known minimum distance, up to one unit, amongst formally self-dual codes, and sometimes improve on the known values. For q = 2, the authors find four improvements on the best-known values of the minimum distance of FSD codes. Over \(\mathbb{F}_{4}\) an explicit construction of DT codes, based on quadratic residues in a prime field, performs equally well. The authors show that DT codes are asymptotically good over \(\mathbb{F}_{q}\). Specifically, the authors construct DT codes arbitrarily close to the asymptotic Varshamov-Gilbert bound for codes of rate one half.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nebe G, Rains E M, and Sloane N J A, Self-Dual Codes and Invariant Theory, Algorithms and Comp. in Math. 17, Springer Verlag, Berlin Heidelberg, New-York, 2006.

    Google Scholar 

  2. Shi M, Choie Y J, Sharma A, et al., Codes and Modular Forms: A Dictionary, World Scientific, Singapore, 2020.

    Google Scholar 

  3. AssmusJr E F and MattsonJr H F, New 5-designs, Journal of Combinatorial Theory, 1969, 6(2): 122–151.

    Article  MathSciNet  Google Scholar 

  4. Qian L, Shi M, and Solé P, On self-dual and LCD quasi-twisted codes of index two over a special chain ring, Cryptography and Communications, 2019, 11(4): 717–734.

    Article  MathSciNet  Google Scholar 

  5. Shi M, Qian L, and Solé P, On self-dual negacirculant codes of index two and four, Designs, Codes Cryptography, 2018, 86(11): 2485–2494.

    Article  MathSciNet  Google Scholar 

  6. Shi M, Sok L, and Solé P, Self-dual codes and orthogonal matrices over large finite fields, Finite Fields and Their Applications, 2018, 54: 297–314.

    Article  MathSciNet  Google Scholar 

  7. Shi M, Zhu H, Qian L, et al., On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb{F}_{q}+u\mathbb{F}_{q}\), Cryptography and Communications, 2020, 12(1): 53–70.

    Article  MathSciNet  Google Scholar 

  8. Wu R and Shi M, A modified Gilbert-Varshamov bound for self-dual quasi-twisted codes of index four, Finite Fields and Their Applications, 2020, 62: 101627.

    Article  MathSciNet  Google Scholar 

  9. Alahmadi A, Alsulami S, Hijazi R, et al., Isodual cyclic codes over finite fields of odd characteristic, Discrete Math., 2016, 339(1): 344–353.

    Article  MathSciNet  Google Scholar 

  10. Blackford T, Isodual constacyclic codes, Finite Fields Appl., 2013, 24: 29–44.

    Article  MathSciNet  Google Scholar 

  11. Kim H J and Lee Y, Construction of isodual codes over GF(q), Finite Fields and Their Applications, 2017, 45: 372–385.

    Article  MathSciNet  Google Scholar 

  12. MacWilliams F J and Sloane N J A, The Theory of Error Correcting Codes, North Holland, Amsterdam, 1977.

    Google Scholar 

  13. Betsumiya K and Harada M, Binary optimal odd formally self-dual codes, Designs, Codes Cryptography, 2001, 23(1): 11–22.

    Article  MathSciNet  Google Scholar 

  14. Dougherty S T, Gulliver T A, and Harada M, Optimal ternary formally self-dual codes, Discrete Math., 1999, 196: 117–135.

    Article  MathSciNet  Google Scholar 

  15. Dougherty S T, Gulliver T A, and Harada M, Optimal formally self-dual codes over \(\mathbb{F}_{5}\) and \(\mathbb{F}_{7}\), Appl. Algebra Eng. Commun. Comput., 2000, 10(3): 227–236.

    Article  Google Scholar 

  16. Fields J, Gaborit P, Pless V, et al., On the classification of extremal even formally self-dual codes of lengths 20 and 22, Discrete Applied Math., 2001, 111: 75–86.

    Article  MathSciNet  Google Scholar 

  17. Kim J L and Pless V, A note on formally self-dual even codes of length divisible by 8, Finite Fields and Their Applications, 2007, 13(2): 224–229.

    Article  MathSciNet  Google Scholar 

  18. Han S and Kim J L, Formally self-dual additive codes over \(\mathbb{F}_{4}\), J. of Symbolic Comp., 2010, 45: 787–799.

    Article  Google Scholar 

  19. Bachoc C, Gulliver A, and Harada M, Isodual codes over ℤ2k and isodual lattices, J. of Algebraic Combinatorics, 2000, 12: 223–240.

    Article  MathSciNet  Google Scholar 

  20. Grassl M, Bounds on the minimum distance of linear codes and quantum codes, 2023, http://www.codetables.de.

    Google Scholar 

  21. Li S, Shi M, and Liu H, On Toeplitz codes of index t and isometry codes, Discrete Math., 2024, 346(9): 113484.

    Article  MathSciNet  Google Scholar 

  22. Li S, Shi M, and Wang J, An improved method for constructing formally self-dual codes with small hulls, Designs, Codes Cryptography, 2023, 91(7): 2563–2583.

    Article  MathSciNet  Google Scholar 

  23. Li Y, Zhu S, and Martínez-Moro E, The hull of two classical propagation rules and their applications, IEEE Trans. Information Theory, 2023, 69(10): 6500–6511.

    Article  MathSciNet  Google Scholar 

  24. Shi M, Özbudak F, Xu L, et al., LCD codes from tridiagonal Toeplitz matrices, Finite Fields and Their Applications, 2021, 75: 101892.

    Article  MathSciNet  Google Scholar 

  25. Sahin M and OzImamoglu H, Additive Toeplitz codes over \(\mathbb{F}_{4}\), Advances in Mathematics of Communications, 2020, 14: 379–395.

    Article  MathSciNet  Google Scholar 

  26. Alahmadi A, Ozdemir F, and Solé P, On self-dual double circulant codes, Designs, Codes Cryptography, 2018, 86(6): 1257–1265.

    Article  MathSciNet  Google Scholar 

  27. Li T, Shi M, Lin B, et al., One and two-weight ℤ2R2 additive codes, Chinese Journal of Electronics, 2021, 30(1): 72–76.

    Article  Google Scholar 

  28. Pei J and Zhang X, 1-generator quasi-cyclic codes, Journal of Systems Science & Complexity, 2007, 20(4): 554–561.

    Article  MathSciNet  Google Scholar 

  29. Shi M, Huang D, and Solé P, Optimal ternary cubic two-weight codes, Chinese Journal of Electronics, 2018, 27(4): 734–738.

    Article  Google Scholar 

  30. Shi M and Wang Y, Optimal binary codes from one-Lee weight codes and two-Lee weight projective codes over ℤ4, Journal of Systems Science & Complexity, 2014, 27(4): 795–810.

    Article  MathSciNet  Google Scholar 

  31. Shi M, Yang S, and Zhu S, Good p-ary quasic-cyclic codes from cyclic codes over \(\mathbb{F}_{p}+v\mathbb{F}_{p}\), Journal of Systems Science & Complexity, 2012, 25(2): 375–384.

    Article  MathSciNet  Google Scholar 

  32. Huffman W C and Pless V, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  33. Shi M, Li X, and Solé P, Construction of isodual codes from polycirculant matrices, Designs, Codes Cryptography, 2020, 88(12): 2547–2560.

    Article  MathSciNet  Google Scholar 

  34. Bosma W, Cannon J, and Playoust C, The magma algebra system I: The user language, J. of Symbolic Comput., 1997, 24: 235–265.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjia Shi.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 12071001.

This paper was recommended for publication by Editor FENG Ruyong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Xu, L. & Solé, P. On Isodual Double Toeplitz Codes. J Syst Sci Complex 37, 2196–2206 (2024). https://doi.org/10.1007/s11424-024-2397-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-024-2397-8

Keywords

Navigation