Abstract
We derive \(L^2([0,T);H_{loc}^{\alpha /2}(\mathbb {R}^d))\), \(\alpha \in [1,2)\), apriori estimate for solutions to the fractional or anomalous diffusion equation using a generalization of the Leibnitz rule for the fractional Laplacean. The equation models a wide range of physical phenomena and, in particular, it is a linearized variant of the fractional porous media equation. The apriori estimates can be further used to rate convergence of corresponding numerical schemes, in the control and optimization theory and for various non-linear fractional PDEs. We use them here to prove existence of solution to a Cauchy problem for the fractional porous media equationas well as a result concerning optimal control.
Similar content being viewed by others
References
Logvinova, K., Nel, M.-C.: A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium. Chaos 14, 982 (2004)
Santoro, P.A., de Paula, J.L., Lenzi, E.K., Evangelista, L.R.: Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell. J. Chem. Phys. 135, 114704 (2011)
de Pablo, A., Quirs, F., Juan, A.R., Vazquez, L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)
del Teso, F.: Finite difference method for a fractional porous medium equation. Calcolo 51, 615–638 (2014)
Imbert, C.: Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143, 149–157 (2016)
Stan, D., del Teso, F., Va zquez, J.L.: Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)
Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87(5), 3518–3524 (2004)
Li, Hl, Zhang, L., Hu, C., Jiang, Y.L., Teng, Z.: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54, 435–449 (2017)
Mophou, G.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)
Rihan, F.A.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, Article ID 816803, 1–11 (2013)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives. Academic Press, San Diego–New York (1999)
Evangelista, L.R., Lenzi, E.K.: Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, Cambridge (2018)
Bonforte, M., Vzquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362 (2015)
Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18, 658–674 (1970)
Mitrovic, D.: On a Leibnitz type formula for fractional derivatives. Filomat 27, 1141–1146 (2013)
Alsaedi, A., Ahmad, B., Kirane, M.: A survey of useful inequalities in fractional calculus. J. Pseudo Differ. Calc. Appl. 20, 574–594 (2017)
Grillo, G., Muratori, M., Punzo, F.: Fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Differ. Equ. 54, 3303–3335 (2015)
Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Annales de l’Institut Henri Poincare Analyse Non linéare 28, 413–441 (2011)
Acknowledgements
This work was partially supported by project P30233 of the Austrian Science Fund FWF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Burazin, K., Mitrovic, D. Apriori estimates for fractional diffusion equation. Optim Lett 13, 1793–1801 (2019). https://doi.org/10.1007/s11590-018-1332-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-018-1332-0