Abstract
The article study chaos control and chaos synchronization of Lorenz–Stenflo system that used full states controllers, two states controllers (u 2 and u 3), and single-state controller (u 3) by Takagi–Sugeno fuzzy theory. Further, the convergence times of chaos control and chaos synchronization are shorten about 18.03–29.56 and 40.19–43.65 % that are compare with full states control, respectively. The system reduces the number of controllers, so it can cost down of the control system. The single-state controller and two states controllers are presented in the simulation results to show the effectiveness and feasibility of our new design rule.















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lorenz, E.-N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
Sun, Y.-J.: A simple observer design of the generalized Lorenz chaotic systems. Phys. Lett. A 374(7), 933–937 (2010)
Chen, H.-K., Lee, C.-I.: Anti-control of chaos in rigid body motion. Chaos, Solitons Fractals 21, 957–965 (2004)
Li, C.-D., Liao, X.-F.: Lag synchronization of Rössler system and Chua circuit via a scalar signal. Phys. Lett. A 329(4–5), 301–308 (2004)
Luo, A.C.J., Han, R.P.S.: A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity. J. Franklin Inst. 334(3), 447–459 (1997)
Sun, Y.-J.: An exponential observer for the generalized Rössler chaotic system. Chaos, Solitons Fractals 40(5), 2457–2461 (2009)
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)
Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)
Wang, Y.-W., Guan, Z.-H., Wang, H.O.: LMI-based fuzzy stability and synchronization of Chen’s system. Phys. Lett. A 320, 154–159 (2003)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15(1), 116–132 (1985)
Lin, T.C., Chen, M.C., Roopaei, M.: Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng. Appl. Artif. Intell. 24(1), 39–49 (2011)
Vembarasan, V., Balasubramaniam, P.: Chaotic synchronization of Rikitake system based on T–S fuzzy control techniques. Nonlinear Dyn. 74, 31–44 (2013)
Ataei, M., Kiyoumarsi, A., Ghorbani, B.: Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement. Phys. Lett. A 374(41), 4226–4230 (2010)
Yang, C.-H.: Enhanced symplectic synchronization between two different complex chaotic systems with uncertain parameters. Abstr. Appl. Anal. Article ID 193138 (2013)
Li, S.-Y., Yang, C.-H., Lin, C.-T., Ko, L.-W., Chiu, T.-T.: Chaotic motions in the real fuzzy electronic circuits. Abstr. Appl. Anal. Article ID 875965 (2013)
Yang, C.-H.: Symplectic synchronization of Lorenz–Stenflo system with uncertain chaotic parameters via adaptive control. Abstr. Appl. Anal. Article ID 528325 (2013)
Li, S.-Y., Yang, C.-H., Ko, L.-W., Lin, C.-T., Ge, Z.-M.: Implementation on electronic circuits and RTR pragmatical adaptive synchronization: time-reversed uncertain dynamical systems analysis and applications. Abstr. Appl. Anal. Article ID 909721 (2013)
Yang, C.-H.: Chaos hybrid generalized synchronization of Liu–Chen system by GYC partial region stability theory. J. Comput. Theor. Nanosci. 10(4), 825–831 (2013)
Yang, C.-H., Chen, T.-W., Li, S.-Y., Chang, C.-M., Ge, Z.-M.: Chaos generalized synchronization of an inertial tachometer with new Mathieu–Van der Pol systems as functional system by GYC partial region stability theory. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1355–1371 (2012)
Hsueh, Y.-C., Su, S.-F.: Learning error feedback design of direct adaptive fuzzy control systems. IEEE Trans. Fuzzy Syst. 20(3), 536–545 (2012)
Yu, G.-R., Huang, H.-T.: A sum-of-squares approach to synchronization of chaotic systems with polynomial fuzzy systems. Int. J. Fuzzy Syst. 15(2), 159–169 (2013)
Chiu, C.-S., Li, Z.-H., Chen, Y.-H.: T–S fuzzy direct maximum power point tracking of wind energy conversion systems. Int. J. Fuzzy Syst. 15(2), 159–169, 192–202 (2013)
Chen, M.-C., Wang, W.-Y., Su, S.-F.: Robust T–S fuzzy-neural control of uncertain active suspension systems. Int. J. Fuzzy Syst. 12(4), 321–329 (2010)
Chou, H.G., Chuang, C.F., Wang, W.-J., Lin, J.C.: A fuzzy-model-based chaotic synchronization and its implementation on a secure communication system. IEEE Trans. Inf. Forensics Secur. 8(12), 2177–2185 (2013)
Chen, Y.-J., Ohtake, H., Wang, W.-J., Wang, H.-O., Tanaka, K.: Relaxed stabilization criterion for T–S fuzzy systems by minimum-type piecewise lyapunov function based switching fuzzy controller. IEEE Trans. Fuzzy Syst. 20(6), 1166–1173 (2012)
Hu, C., Jiang, H.: Time-delayed impulsive control of chaotic system based on T–S fuzzy model. Math. Prob. Eng. 2014(910351), 12 (2014)
Huang, C., Chen, L., Jiang, H., Yuan, C., Xia, T.: Fuzzy chaos control for vehicle lateral dynamics based on active suspension system. Chin. J. Mech. Eng. 27(4), 793–801 (2014)
Wu, Z.-G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)
Stenflo, L.: Generalized Lorenz equations for acousticgravity waves in the atmosphere. Phys. Scr. 53, 83–84 (1996)
Yang, C.-H., Wu, C.-L.: Nonlinear dynamic analysis and synchronization of four dimensional Lorenz–Stenflo system and its circuit experimental implementation. Abstr. Appl. Anal. Article ID 213694 (2014)
Acknowledgments
This research was supported by the National Science Council, Republic of China, under Grant Number NSC 102-2221-E-011-034.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, CH., Wu, CL., Chen, YJ. et al. Reduced Fuzzy Controllers for Lorenz–Stenflo System Control and Synchronization. Int. J. Fuzzy Syst. 17, 158–169 (2015). https://doi.org/10.1007/s40815-015-0032-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-015-0032-5