Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters | IEEE Journals & Magazine | IEEE Xplore

Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters


Abstract:

We present a new approach to structure learning in the field of Bayesian networks. We tackle the problem of the search for the best Bayesian network structure, given a da...Show More

Abstract:

We present a new approach to structure learning in the field of Bayesian networks. We tackle the problem of the search for the best Bayesian network structure, given a database of cases, using the genetic algorithm philosophy for searching among alternative structures. We start by assuming an ordering between the nodes of the network structures. This assumption is necessary to guarantee that the networks that are created by the genetic algorithms are legal Bayesian network structures. Next, we release the ordering assumption by using a "repair operator" which converts illegal structures into legal ones. We present empirical results and analyze them statistically. The best results are obtained with an elitist genetic algorithm that contains a local optimizer.
Published in: IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 18, Issue: 9, September 1996)
Page(s): 912 - 926
Date of Publication: 30 September 1996

ISSN Information:


References

References is not available for this document.