Abstract:
In modern digital manufacturing, nearly 79.6% of the downtime of a machine tool is caused by its mechanical failures. Predictive maintenance (PdM) is a useful way to mini...Show MoreMetadata
Abstract:
In modern digital manufacturing, nearly 79.6% of the downtime of a machine tool is caused by its mechanical failures. Predictive maintenance (PdM) is a useful way to minimize the machine downtime and the associated costs. One of the challenges with PdM is early fault detection under time-varying operational conditions, which means mining sensitive fault features from condition signals in long-term running. However, fault features are often weakened and disturbed by the time-varying harmonics and noise during a machining process. Existing analysis methods of these complex and diverse data are inefficient and time-consuming. This paper proposes a novel method for early fault detection under time-varying conditions. In this study, a deep learning model is constructed to automatically select the impulse responses from the vibration signals in long-term running of 288 days. Then, dynamic properties are identified from the selected impulse responses to detect the early mechanical fault under time-varying conditions. Compared to traditional methods, the experimental results in this paper have proved that our method was not affected by time-varying conditions and showed considerable potential for early fault detection in manufacturing.
Published in: IEEE Transactions on Industrial Electronics ( Volume: 66, Issue: 1, January 2019)