skip to main content
research-article

Adaptive tearing and cracking of thin sheets

Published: 27 July 2014 Publication History

Abstract

This paper presents a method for adaptive fracture propagation in thin sheets. A high-quality triangle mesh is dynamically restructured to adaptively maintain detail wherever it is required by the simulation. These requirements include refining where cracks are likely to either start or advance. Refinement ensures that the stress distribution around the crack tip is well resolved, which is vital for creating highly detailed, realistic crack paths. The dynamic meshing framework allows subsequent coarsening once areas are no longer likely to produce cracking. This coarsening allows efficient simulation by reducing the total number of active nodes and by preventing the formation of thin slivers around the crack path. A local reprojection scheme and a substepping fracture process help to ensure stability and prevent a loss of plasticity during remeshing. By including bending and stretching plasticity models, the method is able to simulate a large range of materials with very different fracture behaviors.

Supplementary Material

ZIP File (a110-pfaff.zip)
Supplemental material.
MP4 File (a110-sidebyside.mp4)

References

[1]
Ando, R., Thürey, N., and Wojtan, C. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. (Proc. SIGGRAPH 2013) (July).
[2]
Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE transactions on visualization and computer graphics 13, 2 (Jan.), 370--8.
[3]
Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Transactions on Graphics 26, 3 (July), 16.
[4]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (July), 594--603.
[5]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '03, 28--36.
[6]
Busaryev, O., Dey, T. K., and Wang, H. 2013. Adaptive fracture simulation of multi-layered thin plates. ACM Transactions on Graphics 32, 4 (July), 1.
[7]
Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation 2007, 219--228.
[8]
Clausen, P., Wicke, M., Shewchuk, J. R., and O'Brien, J. F. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics 32, 2 (Apr.), 1--15.
[9]
Gingold, Y., Secord, A., Han, J. Y., Grinspun, E., and Zorin, D. 2004. A Discrete Model for Inelastic Deformation of Thin Shells. In ACM Symposium on Computer Animation.
[10]
Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-Based Fractured Appearance. Computer Graphics Forum 31, 4 (June), 1547--1556.
[11]
Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '03, 62--67.
[12]
Harmon, D., Vouga, E., Tamstorf, R., and Grinspun, E. 2008. Robust treatment of simultaneous collisions. ACM Trans. Graph. 27, 3 (Aug.), 23:1--23:4.
[13]
Hutchinson, D., Preston, M., and Hewitt, T. 1996. Adaptive refinement for mass/spring simulations. In 7th Eurographics Workshop on Animation and Simulation, Springer-Verlag, 31--45.
[14]
Iben, H. N., and O'Brien, J. F. 2006. Generating surface crack patterns. ACM Symposium on Computer Animation (Sept.), 177--185.
[15]
Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Transactions on Graphics 28, 3 (July), 1.
[16]
Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (July), 820--825.
[17]
Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics, 23 (July), 385----392.
[18]
Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Transactions on Graphics 32, 4 (July), 1.
[19]
Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 31, 6 (Nov.), 1.
[20]
Narain, R., Pfaff, T., and O'Brien, J. F. 2013. Folding and crumpling adaptive sheets. ACM Trans. Graph. 32, 4, 51:1--51:8.
[21]
Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 4, 210--219.
[22]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques - SIGGRAPH '99, ACM Press, New York, New York, USA, 137--146.
[23]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (July), 291--294.
[24]
O'Brien, J. F. 2000. Graphical Modeling and Animation of Fracture.
[25]
Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless Animation of Fracturing Solids. ACM transactions on graphics 24, 3 (July), 957--964.
[26]
Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In ACM Symposium on Computer Animation, Eurographics Association, 73--80.
[27]
Simnett, T. J. R., Laycock, S. D., and Day, A. M. 2009. An Edge-based Approach to Adaptively Refining a Mesh for Cloth Deformation. In Eurographics UK Theory and Practice of Computer Graphics, 77--84.
[28]
Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In ACM Symposium on Computer Animation, ACM Press, New York, New York, USA, 155.
[29]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In Proc. SIGGRAPH '88, 269--278.
[30]
Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth. ACM Transactions on Graphics 30, 4 (July), 1.
[31]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11.
[32]
Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Transactions on Graphics 29, 4 (July), 1--11.
[33]
Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1--47:8.

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/3711852Online publication date: 9-Jan-2025
  • (2025)A Hybrid Lagrangian–Eulerian Formulation of Thin‐Shell FractureComputer Graphics Forum10.1111/cgf.15273Online publication date: 11-Jan-2025
  • (2024)Real-Time Smoke Interaction Simulation using GPU ProgrammingJournal of Digital Contents Society10.9728/dcs.2024.25.3.83325:3(833-840)Online publication date: 31-Mar-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bending
  2. cracking
  3. fracture simulation
  4. plastic deformation
  5. shells
  6. tearing
  7. thin sheets

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)6
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/3711852Online publication date: 9-Jan-2025
  • (2025)A Hybrid Lagrangian–Eulerian Formulation of Thin‐Shell FractureComputer Graphics Forum10.1111/cgf.15273Online publication date: 11-Jan-2025
  • (2024)Real-Time Smoke Interaction Simulation using GPU ProgrammingJournal of Digital Contents Society10.9728/dcs.2024.25.3.83325:3(833-840)Online publication date: 31-Mar-2024
  • (2024)Q3T Prisms: A Linear-Quadratic Solid Shell Element for Elastoplastic SurfacesSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687697(1-9)Online publication date: 3-Dec-2024
  • (2024)Differentiable Voronoi Diagrams for Simulation of Cell-Based Mechanical SystemsACM Transactions on Graphics10.1145/365815243:4(1-11)Online publication date: 19-Jul-2024
  • (2024)Modelling a Feather as a Strongly Anisotropic Elastic ShellACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657503(1-10)Online publication date: 13-Jul-2024
  • (2024)Finite Element Simulation of Crack Propagation in Ice FloesProcedia Structural Integrity10.1016/j.prostr.2024.06.01361(89-97)Online publication date: 2024
  • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
  • (2024)The novel graph transformer-based surrogate model for learning physical systemsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117410432(117410)Online publication date: Dec-2024
  • (2024)Simulating Thin Shells by Bicubic Hermite ElementsComputer-Aided Design10.1016/j.cad.2024.103734174(103734)Online publication date: Sep-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media