skip to main content
10.1145/3500866.3516376acmconferencesArticle/Chapter ViewAbstractPublication PagesihmConference Proceedingsconference-collections
research-article

Validation de l’aspect et du contenu d’un simulateur immersif pour la formation des opérateurs en anesthésie locorégionale échoguidée: Face and content validity of an immersive simulator for training ultrasound-guided locoregional anesthesia operators

Published: 01 November 2022 Publication History

Abstract

Virtual reality is a promising technology for training healthcare professionals in a safe simulation environment. In this work, we present the design and evaluation of an immersive simulator for training ultrasound-guided locoregional anesthesia operators. Eighteen anesthesiologists participated in a face and content validation study of the first prototype of the system. Responses to seven of the eleven questions on face validity were predominantly positive. The main raised issue concerns the fidelity of the needle haptic feedback, suggesting the use of a six degrees of freedom haptic feedback arm in the future prototypes. Responses to all six questions on content validity were predominantly positive. Participants find that the simulator is a promising training tool particularly suited for developing hand-eye coordination skills. These results support our design choices and suggest improvements for our simulator before its validation as a training tool.

References

[1]
Amal Alsalamah, Rudi Campo, Vasilios Tanos, Gregoris Grimbizis, Yves Van Belle, Kerenza Hood, Neil Pugh, and Nazar Amso. 2017. Face and content validity of the virtual reality simulator ‘ScanTrainer®’. Gynecological surgery 14, 1 (2017), 1–8.
[2]
Venkata S Arikatla, Ganesh Sankaranarayanan, Woojin Ahn, Amine Chellali, Suvranu De, GL Caroline, John Hwabejire, Marc DeMoya, Steven Schwaitzberg, and Daniel B Jones. 2013. Face and construct validation of a virtual peg transfer simulator. Surgical endoscopy 27, 5 (2013), 1721–1729.
[3]
Jonathan Balcombe. 2004. Medical training using simulation: toward fewer animals and safer patients. Alternatives to Laboratory Animals 32, 1_suppl (2004), 553–560.
[4]
Lazar Bibin, Anatole Lécuyer, Jean-Marie Burkhardt, Alain Delbos, and Madeleine Bonnet. 2008. SAILOR: a 3-D medical simulator of loco-regional anaesthesia based on desktop virtual reality and pseudo-haptic feedback. In Proceedings of the 2008 ACM symposium on Virtual reality software and technology. 97–100.
[5]
Tobias Blum, Andreas Rieger, Nassir Navab, Helmut Friess, and Marc Martignoni. 2013. A review of computer-based simulators for ultrasound training. Simulation in Healthcare 8, 2 (2013), 98–108.
[6]
Sanne MBI Botden and Jack J Jakimowicz. 2009. What is going on in augmented reality simulation in laparoscopic surgery?Surgical endoscopy 23, 8 (2009), 1693–1700.
[7]
C Buckley, E Nugent, D Ryan, and P Neary. 2012. Virtual reality–A new era in surgical training. Virtual reality in psychological, medical and pedagogical applications 7 (2012), 139–166.
[8]
Vincent Chan and Anna Dabu. 2006. Guide pratique des blocs nerveux échoguidés. Sauramps médical.
[9]
Amine Chellali, Helena Mentis, Amie Miller, Woojin Ahn, Venkata S Arikatla, Ganesh Sankaranarayanan, Suvranu De, Steven D Schwaitzberg, and Caroline GL Cao. 2016. Achieving interface and environment fidelity in the Virtual Basic Laparoscopic Surgical Trainer. International journal of human-computer studies 96 (2016), 22–37.
[10]
Timothy R Coles, Nigel W John, Derek Gould, and Darwin G Caldwell. 2011. Integrating haptics with augmented reality in a femoral palpation and needle insertion training simulation. IEEE transactions on haptics 4, 3 (2011), 199–209.
[11]
Timothy R Coles, Dwight Meglan, and Nigel W John. 2010. The role of haptics in medical training simulators: A survey of the state of the art. IEEE Transactions on haptics 4, 1 (2010), 51–66.
[12]
Cléber G Corrêa, Fátima de Lourdes dos Santos Nunes, and Romero Tori. 2014. Virtual reality-based system for training in dental anesthesia. In International Conference on Virtual, Augmented and Mixed Reality. Springer, 267–276.
[13]
Cléber G Corrêa, Fátima LS Nunes, Edith Ranzini, Ricardo Nakamura, and Romero Tori. 2019. Haptic interaction for needle insertion training in medical applications: The state-of-the-art. Medical engineering & physics 63 (2019), 6–25.
[14]
Ma de los Angeles Alamilla Daniel, Richard Moreau, and Redarce Tanneguy. 2020. Development of haptic simulator for practicing the intraarticular needle injection under echography. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 4713–4716.
[15]
Peter Dieckmann. 2009. Using simulations for education, training and research. Pabst Science Publ.
[16]
Frank A Drews and Jonathan Z Bakdash. 2013. Simulation training in health care. Reviews of Human Factors and Ergonomics 8, 1 (2013), 191–234.
[17]
Andinet Enquobahrie, Sam Horvath, Sreekanth Arikatla, Avi Rosenberg, Kevin Cleary, and Karun Sharma. 2019. Development and face validation of ultrasound-guided renal biopsy virtual trainer. Healthcare Technology Letters 6, 6 (2019), 210.
[18]
David Escobar-Castillejos, Julieta Noguez, Luis Neri, Alejandra Magana, and Bedrich Benes. 2016. A review of simulators with haptic devices for medical training. Journal of medical systems 40, 4 (2016), 1–22.
[19]
Jonas Forsslund, Eva-Lotta Sallnäs Pysander, and Karljohan Lundin Palmerius. 2011. Design of Perceptualization Applications in Medicine. In First workshop on Engineering Interactive Computing Systems for Medicine and Health Care (EICS4Med). Pisa, Italy-June 13, 2011. 42–47.
[20]
W Peter Geis. 1996. Head-mounted video monitor for global visual access in mini-invasive surgery. Surgical endoscopy 10, 7 (1996), 768–770.
[21]
Oliver Grottke, A Ntouba, S Ullrich, Wei Liao, E Fried, A Prescher, TM Deserno, T Kuhlen, and R Rossaint. 2009. Virtual reality-based simulator for training in regional anaesthesia. British journal of anaesthesia 103, 4 (2009), 594–600.
[22]
William S Halsted. 1904. The training of the surgeon. Bull Johns Hop Hosp (1904), 267–275.
[23]
Christopher James Hamblin. 2005. Transfer of* training from virtual reality environments. Wichita State University.
[24]
George B Hanna, Sami M Shimi, and Alfred Cuschieri. 1998. Task performance in endoscopic surgery is influenced by location of the image display.Annals of surgery 227, 4 (1998), 481.
[25]
David J Harris, Jonathan M Bird, Philip A Smart, Mark R Wilson, and Samuel J Vine. 2020. A framework for the testing and validation of simulated environments in experimentation and training. Frontiers in Psychology 11 (2020), 605.
[26]
Gareth Henshall, Serban R Pop, Marc R Edwards, Llyr Ap Cenydd, and Nigel W John. 2015. Towards a high fidelity simulation of the kidney biopsy procedure. In 2015 IEEE Virtual Reality (VR). IEEE, 191–192.
[27]
Victoria W Huang, Cara B Jones, and Ernest D Gomez. 2020. State of the art of virtual reality simulation in anesthesia. International Anesthesiology Clinics 58, 4 (2020), 31–35.
[28]
M Hutton, R Brull, and AJR Macfarlane. 2018. Regional anaesthesia and outcomes. BJA education 18, 2 (2018), 52.
[29]
JORF. 2017. Arrêté du 27 novembre 2017 modifiant l’arrêté du 12 avril 2017 relatif à l’organisation du troisième cycle des études de médecine et arrêté du 21 avril 2017 relatif aux connaissances, aux compétences et aux maquettes de formation des diplômes d’études spécialisées et fixant la liste de ces diplômes et des options et formations spécialisées transversales du troisième cycle des études de médecine.
[30]
Koji Kawaguchi, Hiroyuki Egi, Minoru Hattori, Hiroyuki Sawada, Takahisa Suzuki, and Hideki Ohdan. 2014. Validation of a novel basic virtual reality simulator, the LAP-X, for training basic laparoscopic skills. Minimally Invasive Therapy & Allied Technologies 23, 5(2014), 287–293.
[31]
Hyun K Kim, David W Rattner, and Mandayam A Srinivasan. 2003. The role of simulation fidelity in laparoscopic surgical training. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 1–8.
[32]
Anatole Lécuyer, Sabine Coquillart, Abderrahmane Kheddar, Paul Richard, and Philippe Coiffet. 2000. Pseudo-haptic feedback: can isometric input devices simulate force feedback?. In Proceedings IEEE Virtual Reality 2000 (Cat. No. 00CB37048). IEEE, 83–90.
[33]
Dror David Lev, Roman Rozengurt, Tami Gelfeld, Alex Tarchenshvili, and Miriam Reiner. 2010. The effects of 3D collocated presentation of visuo-haptic information on performance in a complex realistic visuo-motor task. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, 432–437.
[34]
Yanping Lin, Xudong Wang, Fule Wu, Xiaojun Chen, Chengtao Wang, and Guofang Shen. 2014. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Journal of biomedical informatics 48 (2014), 122–129.
[35]
Arez Mameli, Vanda Luengo, Jerome Cau, and Aurel Mesas. 2009. Méthodologie de conception d’un simulateur vidéo laparoscopique. De l’analyse des connaissances á la création des parcours d’apprentissage: Le cas de la chirurgie aortique. In Actes de la conférence EIAH 2009. 8–pages.
[36]
Edward R Mariano, Zwade J Marshall, Richard D Urman, and Alan David Kaye. 2014. Ultrasound and its evolution in perioperative regional anesthesia and analgesia. Best Practice & Research Clinical Anaesthesiology 28, 1(2014), 29–39.
[37]
Edward D Matsumoto. 2011. Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Canadian Urological Association Journal 5, 1 (2011), 27–27.
[38]
K McMains and E Weitzel. 2008. Low-fidelity simulation for skill attainment in endoscopic sinus surgery. The Internet Journal of Otorhinolaryngology 11, 1 (2008).
[39]
Catherine M Nix, Clarita B Margarido, Imad T Awad, Arsenio Avila, Jeffrey JH Cheung, Adam Dubrowski, and Colin JL McCartney. 2013. A scoping review of the evidence for teaching ultrasound-guided regional anesthesia. Regional Anesthesia & Pain Medicine 38, 6 (2013), 471–480.
[40]
Allison M Okamura, Christina Simone, and Mark D O’leary. 2004. Force modeling for needle insertion into soft tissue. IEEE transactions on biomedical engineering 51, 10 (2004), 1707–1716.
[41]
Neil Orzech, Vanessa N Palter, Richard K Reznick, Rajesh Aggarwal, and Teodor P Grantcharov. 2012. A comparison of 2 ex vivo training curricula for advanced laparoscopic skills: a randomized controlled trial. Annals of surgery 255, 5 (2012), 833–839.
[42]
Lucian Panait, Ehab Akkary, Robert L Bell, Kurt E Roberts, Stanley J Dudrick, and Andrew J Duffy. 2009. The role of haptic feedback in laparoscopic simulation training. Journal of Surgical Research 156, 2 (2009), 312–316.
[43]
Ken Perlin. 1985. An image synthesizer. ACM Siggraph Computer Graphics 19, 3 (1985), 287–296.
[44]
Gourishetti Ravali and Muniyandi Manivannan. 2017. Haptic feedback in needle insertion modeling and simulation. IEEE reviews in biomedical engineering 10 (2017), 63–77.
[45]
Aylen Ricca, Amine Chellali, and Samir Otmane. 2020. Influence of hand visualization on tool-based motor skills training in an immersive VR simulator. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 260–268.
[46]
Aylen Ricca, Amine Chellali, and Samir Otmane. 2021. Comparing touch-based and head-tracking navigation techniques in a virtual reality biopsy simulator. Virtual Reality 25, 1 (2021), 191–208.
[47]
Aylen Ricca, Amine Chellali, and Samir Otrnane. 2021. The influence of hand visualization in tool-based motor-skills training, a longitudinal study. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR). IEEE, 103–112.
[48]
Andrew D Rosenberg, Jovan Popovic, David B Albert, Robert A Altman, Mitchell H Marshall, Richard M Sommer, and Germaine Cuff. 2012. Three partial-task simulators for teaching ultrasound-guided regional anesthesia. Regional Anesthesia & Pain Medicine 37, 1 (2012), 106–110.
[49]
Ben Sainsbury, Maciej Łącki, Mohammed Shahait, Mitchell Goldenberg, Amir Baghdadi, Lora Cavuoto, Jing Ren, Mark Green, Jason Lee, Timothy D Averch, 2020. Evaluation of a virtual reality percutaneous nephrolithotomy (PCNL) surgical simulator. Frontiers in Robotics and AI(2020), 145.
[50]
Richard M Satava, Alfred Cuschieri, and Jeffrey Hamdorf. 2003. Metrics for objective assessment. Surgical endoscopy 17, 2 (2003), 220.
[51]
Neal E Seymour, Anthony G Gallagher, Sanziana A Roman, Michael K O’brien, Vipin K Bansal, Dana K Andersen, and Richard M Satava. 2002. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Annals of surgery 236, 4 (2002), 458.
[52]
Brian D Sites, Vincent W Chan, Joseph M Neal, Robert Weller, Thomas Grau, Zbigniew J Koscielniak-Nielsen, and Giorgio Ivani. 2010. The American Society of Regional Anesthesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia. Regional Anesthesia & Pain Medicine 35, Suppl 1 (2010), S74–S80.
[53]
Scott Sparks, David Evans, and Don Byars. 2014. A low cost, high fidelity nerve block model. Critical Ultrasound Journal 6, 1 (2014), 1–3.
[54]
Sarah Steigerwald. 2014. Do fundamentals of laparoscopic surgery (FLS) and LapVR evaluation metrics predict intra-operative performance?University of Manitoba (Canada).
[55]
Thomas A Stoffregen, Benoit G Bardy, LJ Smart, and RJ Pagulayan. 2003. On the nature and evaluation of fidelity in virtual environments. Virtual and adaptive environments: Applications, implications, and human performance issues(2003), 111–128.
[56]
David Swapp, Vijay Pawar, and Céline Loscos. 2006. Interaction with co-located haptic feedback in virtual reality. Virtual Reality 10, 1 (2006), 24–30.
[57]
Ankeet D Udani, T Edward Kim, Steven K Howard, and Edward R Mariano. 2015. Simulation in teaching regional anesthesia: current perspectives. Local and regional anesthesia 8 (2015), 33.
[58]
M Varoquier, CP Hoffmann, C Perrenot, N Tran, and C Parietti-Winkler. 2017. Construct, face, and content validation on Voxel-Man® simulator for otologic surgical training. International Journal of Otolaryngology 2017 (2017).
[59]
Franck Patrick Vidal, Nigel W John, Andrew E Healey, and Derek A Gould. 2008. Simulation of ultrasound guided needle puncture using patient specific data with 3D textures and volume haptics. Computer Animation and Virtual Worlds 19, 2 (2008), 111–127.
[60]
Franck P Vidal, Pierre-Frederic Villard, Richard Holbrey, Nigel W. John, Fernando Bello, Andrew Bulpitt, and Derek A Gould. 2009. Developing an immersive ultrasound guided needle puncture simulator. Medicine Meets Virtual Reality 17: NextMed: Design For/the Well Being 142 (2009), 398.
[61]
David Waller, Earl Hunt, and David Knapp. 1998. The transfer of spatial knowledge in virtual environment training. Presence 7, 2 (1998), 129–143.
[62]
Breedveld Wentink. 2001. Eye-hand coordination in laparoscopy-an overview of experiments and supporting aids. Minimally Invasive Therapy & Allied Technologies 10, 3(2001), 155–162.
[63]
JD Westwood 2009. Virtual reality-based regional anaesthesia simulator for axillary nerve blocks. Medicine Meets Virtual Reality 17: NextMed: Design For/the Well Being 142 (2009), 392.
[64]
Eugenia Yiannakopoulou, Nikolaos Nikiteas, Despina Perrea, and Christos Tsigris. 2015. Virtual reality simulators and training in laparoscopic surgery. International Journal of Surgery 13 (2015), 60–64.

Index Terms

  1. Validation de l’aspect et du contenu d’un simulateur immersif pour la formation des opérateurs en anesthésie locorégionale échoguidée: Face and content validity of an immersive simulator for training ultrasound-guided locoregional anesthesia operators

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        IHM '22: Proceedings of the 33rd Conference on l'Interaction Humain-Machine
        April 2022
        173 pages
        ISBN:9781450391894
        DOI:10.1145/3500866
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        In-Cooperation

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 01 November 2022

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Fidélité du simulateur
        2. Formation médicale
        3. Medical education
        4. Réalité virtuelle
        5. Simulateur Immersif
        6. Simulator fidelity
        7. Virtual reality
        8. immersive simulator

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        Conference

        IHM '22

        Acceptance Rates

        Overall Acceptance Rate 103 of 199 submissions, 52%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 25
          Total Downloads
        • Downloads (Last 12 months)8
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 20 Feb 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media