Turbo-CF: Matrix Decomposition-Free Graph Filtering for Fast Recommendation
Abstract
References
Index Terms
- Turbo-CF: Matrix Decomposition-Free Graph Filtering for Fast Recommendation
Recommendations
Parallel Ratio Based CF for Recommendation System
ICCCNT '16: Proceedings of the 7th International Conference on Computing Communication and Networking TechnologiesWith the increase in E-commerce, Recommendation Systems are getting popular to provide recommendations of various items (movies, books, music) to users. To build the Recommendation System (RS), Collaborative Filtering (CF) techniques are proven ...
Typicality-Based Collaborative Filtering Recommendation
Collaborative filtering (CF) is an important and popular technology for recommender systems. However, current CF methods suffer from such problems as data sparsity, recommendation inaccuracy, and big-error in predictions. In this paper, we borrow ideas ...
Collaborative filtering using non-negative matrix factorisation
Collaborative filtering is a popular strategy in recommender systems area. This approach gathers users' ratings and then predicts what users will rate based on their similarity to other users. However, most of the collaborative filtering methods have ...
Comments
Information & Contributors
Information
Published In
- General Chairs:
- Grace Hui Yang,
- Hongning Wang,
- Sam Han,
- Program Chairs:
- Claudia Hauff,
- Guido Zuccon,
- Yi Zhang
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Short-paper
Funding Sources
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 201Total Downloads
- Downloads (Last 12 months)201
- Downloads (Last 6 weeks)52
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in