Random Spacing between Metal Tree Electrodeposits in Linear DLA Arrays
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Random Oscillations
3.2. Distance Entropy
3.3. Theoretical Modeling
3.3.1. Background
3.3.2. Method
3.3.3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ball, P. The Self-Made Tapestry: Pattern Formation in Nature; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Viscek, T. Fractal Growth Phenomena; World Scientific: Singapore, 1991. [Google Scholar]
- Falconer, K.J. The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Philos. Soc. 1988, 103, 339–350. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Elsner, J.B. Fractal characterization and simulation of lightning. Beitr. Phys. Atmos. 1987, 60, 187–192. [Google Scholar]
- Claps, P.; Fiorentino, M.; Oliveto, G. Informational entropy of fractal river networks. J. Hydrol. 1996, 187, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Matsuyama, T.; Matsushita, M. Fractal morphogenesis by a bacterial cell population. Crit. Rev. Microbiol. 1993, 19, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, T.; Matsushita, M. Self-similar colony morphogenesis by gram-negative rods as the experimental model of fractal growth by a cell population. Appl. Environ. Microbiol. 1992, 58, 1227–1232. [Google Scholar] [PubMed]
- Goldbeter, A.L.; Rigney, D.R.; West, B.J. Chaos and fractals in human physiology. Sci. Am. 1990, 262, 42–49. [Google Scholar] [CrossRef]
- Ball, P. Branches, Nature’s Patterns: A Tapestry in Three Parts; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Rudas, A.; Tόth, I.P. Entropy and Hausdorff dimension in random growing trees. Stoch. Dyn. 2013, 13, 1250010. [Google Scholar] [CrossRef]
- Toramaru, A.; Giochi, A. Transition between periodic precipitation and tree-like crystal aggregates. J. Mineral. Soc. Jpn. 1996, 26, 103–106. [Google Scholar] [CrossRef]
- Mandalian, L.; Sultan, R. Fractal structures in PbF2/Pb(NO3)2 precipitate systems. Collect. Czechoslov. Chem. Commun. 2002, 67, 1729–1742. [Google Scholar] [CrossRef]
- Matsushita, M.; Sano, M.; Hayakawa, Y.; Honjo, H.; Sawada, Y. Fractal structures of zinc metal leaves grown by electrodeposition. Phys. Rev. Lett. 1984, 53, 286–289. [Google Scholar] [CrossRef]
- Trigueros, P.P.; Claret, J.; Mas, F.; Sagués, F. Pattern morphologies in zinc electrodeposition. J. Electroanal. Chem. 1991, 312, 219–235. [Google Scholar] [CrossRef]
- Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 1993, 39, 756–775. [Google Scholar]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- Larget, B.; Simon, D.L. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 1999, 16, 750–759. [Google Scholar] [CrossRef]
- Karp, R.; Miller, R.; Rosenberg, A. Rapid identification of repeated patterns in strings, trees and arrays. In Proceedings of the 4th Annual ACM Symposium on Theory of Computing, Denver, CO, USA, 1–3 May 1972; pp. 125–136. [Google Scholar]
- Saab, R.; Sultan, R. Density, fractal angle, and fractal dimension in linear Zn electrodeposition morphology. J. Non-Equilib. Thermodyn. 2005, 30, 321–336. [Google Scholar] [CrossRef]
- Nakouzi, E.; Sultan, R. Fractal structures in two-metal electrodeposition systems I: Pb and Zn. Chaos 2011, 21, 043133. [Google Scholar] [CrossRef] [PubMed]
- Nakouzi, E.; Sultan, R. Fractal structures in two-metal electrodeposition systems II: Cu and Zn. Chaos 2012, 22, 023122. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Farah, H.; Zein Eddin, A.; Isber, S.; Sultan, R. Ag fractal structures in electroless metal deposition systems with and without magnetic field. Chaos 2017, 27, 083111. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zmeskal, O.; Dzik, P.; Vesely, M. Entropy of fractal systems. Comput. Math. Appl. 2013, 66, 135–146. [Google Scholar] [CrossRef]
- Kalash, L.; Sultan, R. Routes to fractality and entropy in Liesegang systems. Chaos 2014, 24, 023121. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G.; Kessler, D.A.; Sander, L.M. Stability of the dense radial morphology in diffusive pattern formation. Phys. Rev. Lett. 1987, 59, 2315–2318. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Dougherty, A.; Gollub, J.P. Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 1986, 56, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Pranami, G.; Lamm, M.H.; Vigil, R.D. Molecular dynamics simulation of fractal aggregate diffusion. Phys. Rev. E 2010, 82, 051402. [Google Scholar] [CrossRef] [PubMed]
- Fleury, V.; Kaufman, J.; Hbbert, B. Evolution of the space-charge layer during electrochemical deposition with convection. Phys. Rev. E 1993, 48, 3831–3840. [Google Scholar] [CrossRef]
- Chen, C.P.; Jorné, J. Fractal analysis of zinc electrodeposition. J. Electrochem. Soc. 1990, 137, 2047–2051. [Google Scholar] [CrossRef]
- Witten, T.A., Jr.; Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400–1403. [Google Scholar] [CrossRef]
- MathWorks Inc. Matlab Computing Software; MathWorks Inc.: Natick, MA, USA.
- Sagués, F.; Costa, J.M. A microcomputer simulation of fractal electrodeposition. J. Chem. Educ. 1989, 66, 502–506. [Google Scholar]
Set | N | S |
---|---|---|
1 | 30 | 1.82 |
2 | 54 | 1.72 |
3 | 33 | 1.82 |
4 | 65 | 1.76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tannous, J.; Anouti, L.; Sultan, R. Random Spacing between Metal Tree Electrodeposits in Linear DLA Arrays. Entropy 2018, 20, 643. https://doi.org/10.3390/e20090643
Tannous J, Anouti L, Sultan R. Random Spacing between Metal Tree Electrodeposits in Linear DLA Arrays. Entropy. 2018; 20(9):643. https://doi.org/10.3390/e20090643
Chicago/Turabian StyleTannous, Jaad, Lina Anouti, and Rabih Sultan. 2018. "Random Spacing between Metal Tree Electrodeposits in Linear DLA Arrays" Entropy 20, no. 9: 643. https://doi.org/10.3390/e20090643
APA StyleTannous, J., Anouti, L., & Sultan, R. (2018). Random Spacing between Metal Tree Electrodeposits in Linear DLA Arrays. Entropy, 20(9), 643. https://doi.org/10.3390/e20090643