Cross-Scale Interactions and Information Transfer
Abstract
:1. Introduction
- (1)
- The cause occurs before the effect; and
- (2)
- The cause contains information about the effect that is unique, and is in no other variable.
2. Overview of Methods
2.1. Measuring Dependence with Mutual Information
- I(X; Y ) ≥ 0,
- I(X; Y ) = 0 iff X and Y are independent.
2.2. Inference of Causality with the Conditional Mutual Information
2.3. Example: Unidirectionally Coupled Rössler Systems
2.4. Interactions over Time Scales
- phase–phase
- amplitude–amplitude
- phase–amplitude
2.5. Statistical Evaluation with Surrogate Data
3. Results and Discussion
3.1. Coping with Method Errors
3.2. Cross-Scale Information Transfer in Atmospheric Dynamics
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization. A Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Schäfer, C.; Rosenblum, M.G.; Kurths, J.; Abel, H.H. Heartbeat synchronized with ventilation. Nature 1998, 392, 239–240. [Google Scholar]
- Paluš, M.; Hoyer, D. Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng. Med. Biol. Mag 1998, 17, 40–45. [Google Scholar]
- Rodriguez, E.; George, N.; Lachaux, J.P.; Martinerie, J.; Renault, B.; Varela, F.J. Perception’s shadow: Long distance synchronization of human brain activity. Nature 1999, 397, 430–433. [Google Scholar]
- Paluš, M.; Komárek, V.; Hrnčíř, Z.; Štěrbová,, K. Synchronization as adjustment of information rates: Detection from bivariate time series. Phys. Rev. E 2001, 63, 046211. [Google Scholar]
- Paluš, M.; Komárek, V.; Procházka, T.; Hrnčíř, Z.; Štěrbová,, K. Synchronization and information flow in EEGs of epileptic patients. IEEE Eng. Med. Biol. Mag 2001, 20, 65–71. [Google Scholar]
- Lehnertz, K.; Bialonski, S.; Horstmann, M.T.; Krug, D.; Rothkegel, A.; Staniek, M.; Wagner, T. Synchronization phenomena in human epileptic brain networks. J. Neurosci. Methods 2009, 183, 42–48. [Google Scholar]
- Rybski, D.; Havlin, S.; Bunde, A. Phase synchronization in temperature and precipitation records. Phys. A 2003, 320, 601–610. [Google Scholar]
- Paluš, M.; Novotná, D. Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized. Nonlin. Processes Geophys 2006, 13, 287–296. [Google Scholar]
- Paluš, M.; Novotná, D. Phase-coherent oscillatory modes in solar and geomagnetic activity and climate variability. J. Atmos. Sol.-Terr. Phys 2009, 71, 923–930. [Google Scholar]
- Feliks, Y.; Ghil, M.; Robertson, A.W. Oscillatory climate modes in the Eastern Mediterranean and their synchronization with the North Atlantic Oscillation. J. Clim 2010, 23, 4060–4079. [Google Scholar]
- Paluš, M.; Novotná, D. Northern Hemisphere patterns of phase coherence between solar/geomagnetic activity and NCEP/NCAR and ERA40 near-surface air temperature in period 7–8 years oscillatory modes. Nonlin. Processes Geophys 2011, 18, 251–260. [Google Scholar]
- Feliks, Y.; Groth, A.; Robertson, A.W.; Ghil, M. Oscillatory climate modes in the Indian monsoon, North Atlantic, and Tropical Pacific. J. Clim 2013, 26, 9528–9544. [Google Scholar]
- Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep 2007, 441, 1–46. [Google Scholar]
- Wiener, N. The theory of prediction. In Modern Mathematics for Engineers; Beckenbach, E., Ed.; McGraw-Hill: New York NY, USA, 1956. [Google Scholar]
- Granger, C.W.J. Time series analysis, cointegration, and applications. In Les Prix Nobel. The Nobel Prizes 2003; Frängsmyr, T., Ed.; Nobel Foundation: Stockholm, Sweden, 2004; pp. 360–366. [Google Scholar]
- Granger, C.W.J. Investigating causal relations by econometric models and cross spectral models. Econometrica 1969, 37, 424–438. [Google Scholar]
- Cover, T.; Thomas, J. Elements of Information Theory; J. Wiley: New York, NY, USA, 1991. [Google Scholar]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett 2000, 85, 461–464. [Google Scholar]
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett 2009, 103, 238701. [Google Scholar]
- Runge, J.; Heitzig, J.; Petoukhov, V.; Kurths, J. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys. Rev. Lett 2012, 108, 258701. [Google Scholar]
- Kugiumtzis, D. Direct-coupling information measure from nonuniform embedding. Phys. Rev. E 2013, 87, 062918. [Google Scholar]
- Sun, J.; Bollt, E.M. Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings. Phys. D 2014, 267, 49–57. [Google Scholar]
- Arnhold, J.; Grassberger, P.; Lehnertz, K.; Elger, C. A robust method for detecting interdependences: Application to intracranially recorded EEG. Phys. D 1999, 134, 419–430. [Google Scholar]
- Quiroga, R.Q.; Arnhold, J.; Grassberger, P. Learning driver-response relationships from synchronization patterns. Phys. Rev. E 2000, 61, 5142–5148. [Google Scholar]
- Paluš, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed connections. Phys. Rev. E 2007, 75, 056211. [Google Scholar]
- Chicharro, D.; Andrzejak, R.G. Reliable detection of directional couplings using rank statistics. Phys. Rev. E 2009, 80, 026217. [Google Scholar]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.h.; Deyle, E.; Fogarty, M.; Munch,, S. Detecting Causality in Complex Ecosystems. Science 2012, 338, 496–500. [Google Scholar]
- Paluš, M. Detecting nonlinearity in multivariate time series. Phys. Lett. A 1996, 213, 138–147. [Google Scholar]
- Paluš, M.; Albrecht, V.; Dvořák, I. Information theoretic test for nonlinearity in time series. Phys. Lett. A 1993, 175, 203–209. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Rand, D.A., Young, L.S., Eds.; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar]
- Kocarev, L.; Parlitz, U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett 1996, 76, 1816–1819. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar]
- Gans, F.; Schumann, A.Y.; Kantelhardt, J.W.; Penzel, T.; Fietze, I. Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys. Rev. Lett 2009, 102, 098701. [Google Scholar]
- Heil, C.; Walnut, D. Continuous and discrete wavelet transforms. SIAM Rev 1989, 31, 628–666. [Google Scholar]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys 2008, 46. [Google Scholar] [CrossRef]
- Paluš, M.; Novotná, D. Enhanced Monte Carlo Singular System Analysis and detection of period 7.8 years oscillatory modes in the monthly NAO index and temperature records. Nonlin. Processes Geophys 2004, 11, 721–729. [Google Scholar]
- Paluš, M.; Novotná, D.; Tichavský, P. Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation. Geophys. Res. Lett 2005, 32, L12805. [Google Scholar]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc 1998, 79, 61–78. [Google Scholar]
- Jirsa, V.; Müller, V. Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci 2013, 7. [Google Scholar] [CrossRef]
- Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for nonlinearity in time series: the method of surrogate data. Phys. D 1992, 58, 77–94. [Google Scholar]
- Paluš, M. Bootstrapping multifractals: Surrogate data from random cascades on wavelet dyadic trees. Phys. Rev. Lett 2008, 101, 134101. [Google Scholar]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Benzi, R.; Biferale, L.; Crisanti, A.; Paladin, G.; Vergassola, M.; Vulpiani, A. A random process for the construction of multiaffine fields. Phys. D 1993, 65, 352–358. [Google Scholar]
- Arneodo, A.; Bacry, E.; Muzy, J.F. Random cascades on wavelet dyadic trees. J. Math. Phys 1998, 39. [Google Scholar] [CrossRef]
- Vejmelka, M.; Paluš, M. Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E 2008, 77, 026214. [Google Scholar]
- Paluš, M. Testing for nonlinearity using redundancies—quantitative and qualitative aspects. Phys. D 1995, 80, 186–205. [Google Scholar]
- Nicolis, C.; Nicolis, G. Is there a climatic attractor? Nature 1984, 311, 529–532. [Google Scholar]
- Nicolis, C.; Nicolis, G. Evidence for climatic attractor. Nature 1987, 326, 529–532. [Google Scholar]
- Fraedrich, K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci 1986, 43, 419–432. [Google Scholar]
- Tsonis, A.A.; Elsner, J.B. The weather attractor over very short timescales. Nature 1988, 333, 545–547. [Google Scholar]
- Grassberger, P. Do climatic attractors exist? Nature 1986, 323, 609–612. [Google Scholar]
- Lorenz, E.N. Dimension of weather and climate attractors. Nature 1991, 353, 241–244. [Google Scholar]
- Paluš, M.; Novotná, D. Testing for nonlinearity in weather records. Phys. Lett. A 1994, 193, 67–74. [Google Scholar]
- Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M. Non-linear dependence and teleconnections in climate data: Sources, relevance, nonstationarity. Clim. Dyn 2014, 42, 1873–1886. [Google Scholar]
- Tsonis, A.A.; Elsner, J.B. Chaos, strange attractors, and weather. Bull. Am. Meteorol. Soc 1989, 70, 14–23. [Google Scholar]
- Tsonis, A.A. Climate Subsystems: Pacemakers of Decadal Climate Variability. In Extreme Events and Natural Hazards: The Complexity Perspective; Sharma, A.S., Bunde, A., Dimri, V.P., Baker, D.N., Eds.; American Geophysical Union: Washington D. C., USA, 2012; pp. 191–208. [Google Scholar]
- Vejmelka, M.; Pokorná, L.; Hlinka, J.; Hartman, D.; Jajcay, N.; Paluš, M. Non-random correlation structures and dimensionality reduction in multivariate climate data. Clim. Dyn 2014. [Google Scholar] [CrossRef]
- Tsonis, A.; Wang, G.; Swanson, K.; Rodrigues, F.; Costa, L. Community structure and dynamics in climate networks. Clim. Dyn 2011, 37, 933–940. [Google Scholar]
- Radebach, A.; Donner, R.V.; Runge, J.; Donges, J.F.; Kurths, J. Disentangling different types of El Niño episodes by evolving climate network analysis. Phys. Rev. E 2013, 88, 052807. [Google Scholar]
- Hlinka, J.; Hartman, D.; Jajcay, N.; Vejmelka, M.; Donner, R.; Marwan, N.; Kurths, J.; Paluš, M. Regional and inter-regional effects in evolving climate networks. Nonlin. Processes Geophys 2014, 21, 451–462. [Google Scholar]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demaree, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol 2002, 22, 1441–1453. [Google Scholar]
- Deutscher Wetterdienst of the German Federal Ministry of Transport, Building and Urban Development. Available online: http://www.dwd.de/ accessed on 21 September 2012.
- Paluš, M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett 2014, 112, 078702. [Google Scholar]
- Čermák, V.; Bodri, L.; Šafanda, J.; Krešl, M.; Dědeček, P. Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climate-change observatory. Stud. Geophys. Geod 2014, 58, 403–424. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Paluš, M. Cross-Scale Interactions and Information Transfer. Entropy 2014, 16, 5263-5289. https://doi.org/10.3390/e16105263
Paluš M. Cross-Scale Interactions and Information Transfer. Entropy. 2014; 16(10):5263-5289. https://doi.org/10.3390/e16105263
Chicago/Turabian StylePaluš, Milan. 2014. "Cross-Scale Interactions and Information Transfer" Entropy 16, no. 10: 5263-5289. https://doi.org/10.3390/e16105263
APA StylePaluš, M. (2014). Cross-Scale Interactions and Information Transfer. Entropy, 16(10), 5263-5289. https://doi.org/10.3390/e16105263