A Socio-Analytical Approach to the Integration of Drones into Health Care Systems
Abstract
:1. Introduction
What knowledge of socio-technical theories may support an extended focus associated with implementing drones into health care systems?
2. Materials and Methods
2.1. Research Question and Search Terms
- The integration of drones into existing systems;
- Potential drivers of and barriers to the integration of drones;
- Prerequisites for the integration of drones.
2.2. Identifying the Relevant Literature
- Drones OR Unmanned Aerial Vehicles OR Unmanned Aerial System;
- Healthcare OR Health Systems OR Systems Integration;
- Transportation OR Logistics OR Innovations;
- 1 AND 2 AND 3.
2.3. Exclusion Criteria for Literature
2.4. Analysis and Charting of the Data
3. Results
3.1. Additional Documents
3.2. Descriptions of Findings
The Clinical Level (Niche)
3.3. Digitalization
3.4. Integration of Different Technologies and Services
3.5. Public Acceptance
3.6. Regulation/Legislation
The Institutional Level (Regime)
3.7. Integration Challenges
- Integration requires unprecedented levels of interoperability * and standardization;
- Implementation faces many technical and organizational challenges and raises unsolved ethical, legal, and societal issues;
- Impact on health outcomes is difficult to measure and has been poorly addressed so far.
3.8. Facilitating Innovation Processes
3.9. Collaborations
The Health Care System Level (Landscape)
3.10. Adoption
3.11. Diffusion/Acceleration
3.12. Change and Transitions in Relation to Ethics
Drones for Remote and Rural Services and Cost Perspectives
4. Discussion
4.1. Future Actions: From the Clinical to Institutional Level—The Proof of Concept?
How Does the MLP Concept Apply to This Process?
4.2. The Health Care System Level
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Casalino, L.; Gillies, R.R.; Shortell, S.M.; Schmittdiel, J.A.; Bodenheimer, T.; Robinson, J.C.; Rundall, T.; Oswald, N.; Schauffler, H.; Wang, M.C. External incentives, information technology, and organized processes to improve health care quality for patients with chronic diseases. JAMA J. Am. Med. Assoc. 2003, 289, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturesson, L.; Groth, K. Effects of the digital transformation: Qualitative study on the disturbances and limitations of using video visits in outpatient care. J. Med. Internet Res. 2018, 20, e221. [Google Scholar] [CrossRef] [PubMed]
- Vogt, C.; Gersch, M.; Spies, C.; Bengler, K. Digital Transformation in Healthcare: How the Potential of Digital Health Is Tackled to Transform the Care Process of Intensive Care Patients Across All Healthcare Sectors. In Digitalization Cases; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Susanto, H.; Chen, C.K. Information and Communication Emerging Technology: Making Sense of Healthcare Innovation. In Internet of Things and Big Data Technologies for Next Generation Healthcare; Studies in Big Data; Springer International Publishing: Cham, Switzerland, 2017; pp. 229–250. [Google Scholar] [CrossRef]
- Yoon, S.N.; Lee, D. Artificial intelligence and robots in healthcare: What are the success factors for technology-based service encounters? Int. J. Healthc. Manag. 2019, 12, 218–225. [Google Scholar] [CrossRef]
- Amukele, T.K.; Sokoll, L.J.; Pepper, D.; Howard, D.P.; Street, J. Can unmanned aerial systems (drones) be used for the routine transport of chemistry, hematology, and coagulation laboratory specimens? PLoS ONE 2015, 10, e0134020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claesson, A.; Fredman, D.; Svensson, L.; Ringh, M.; Hollenberg, J.; Nordberg, P.; Rosenqvist, M.; Djarv, T.; Osterberg, S.; Lennartsson, J.; et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 124. [Google Scholar] [CrossRef]
- Haidari, L.A.; Brown, S.T.; Ferguson, M.; Bancroft, E.; Spiker, M.; Wilcox, A.; Ambikapathi, R.; Sampath, V.; Connor, D.L.; Lee, B.Y. The economic and operational value of using drones to transport vaccines. Vaccine 2016, 34, 4062–4067. [Google Scholar] [CrossRef] [Green Version]
- Amukele, T.K.; Hernandez, J.; Snozek, C.L.H.; Wyatt, R.G.; Douglas, M.; Amini, R.; Street, J. Drone Transport of Chemistry and Hematology Samples over Long Distances. Am. J. Clin. Pathol. 2017, 148, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, G.J.; Cho, J.; Côté, M.J. Drone-Aided Healthcare Services for Patients with Chronic Diseases in Rural Areas. J. Intell. Robot. Syst. 2017, 88, 163–180. [Google Scholar] [CrossRef]
- Rosser, J.C.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and medical applications of drones: A comprehensive review. JSLS J. Soc. Laparoendosc. Surg. 2018, 22, e2018.00018. [Google Scholar] [CrossRef] [Green Version]
- Scalea, J.R.; Restaino, S.; Scassero, M.; Blankenship, G.; Bartlett, S.T.; Wereley, N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-Time Organ Status Measurement for Transporting Human Organs. IEEE J. Transl. Eng. Health Med. 2018, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, K.A.; Wear, N.K.S.; Toska, K.; Hansbo, M.; Berg, J.P.; Fosse, E. Pathologic Blood Samples Tolerate Exposure to Vibration and High Turbulence in Simulated Drone Flights, but Plasma Samples Should be Centrifuged after Flight. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Perlee, D.; van der Steege, K.H.; den Besten, G. The effect of drone transport on the stability of biochemical, coagulation and hematological parameters in healthy individuals. Clin. Chem. Lab. Med. 2021, 59, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Amukele, T.K.; Street, J.; Carroll, K.; Miller, H.; Zhang, S.X. Drone transport of microbes in blood and sputum laboratory specimens. J. Clin. Microbiol. 2016, 54, 2622–2625. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, W.O.; Ye, T.; Scheel, C.; Lor, A.; Saindon, J.; Yee, S.L.; Meltzer, M.I.; Kapil, V.; Karem, K. Uncrewed aircraft systems versus motorcycles to deliver laboratory samples in west Africa: A comparative economic study. Lancet Glob. Health 2020, 8, e143–e151. [Google Scholar] [CrossRef] [Green Version]
- Müller, S.; Rudolph, C.; Janke, C. Drones for Last Mile Logistics: Baloney or Part of the Solution? Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 41, pp. 73–87. [Google Scholar] [CrossRef]
- Hiebert, B.; Nouvet, E.; Jeyabalan, V.; Donelle, L. The Application of Drones in Healthcare and Health-Related Services in North America: A Scoping Review. Drones 2020, 4, 30. [Google Scholar] [CrossRef]
- Homier, V.; Brouard, D.; Nolan, M.; Roy, M.A.; Pelletier, P.; McDonald, M.; de Champlain, F.; Khalil, E.; Grou-Boileau, F.; Fleet, R. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J. Trauma Acute Care Surg. 2021, 90, 515–521. [Google Scholar] [CrossRef]
- Osakwe, C.N.; Hudik, M.; Říha, D.; Stros, M.; Ramayah, T. Critical factors characterizing consumers’ intentions to use drones for last-mile delivery: Does delivery risk matter? J. Retail. Consum. Serv. 2021, 65, 102865. [Google Scholar] [CrossRef]
- Tatham, P.; Stadler, F.; Murray, A.; Shaban, R.Z. Flying maggots: A smart logistic solution to an enduring medical challenge. J. Humanit. Logist. Supply Chain. Manag. 2017, 7, 172–193. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Winkenbach, M. Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Syst. Appl. 2021, 177, 114854. [Google Scholar] [CrossRef]
- Gruson, D. New Solutions for the Sample Transport and Results Delivery: A Digital Lab. eJIFCC 2018, 29, 210–214. [Google Scholar] [PubMed]
- Eichleay, M.; Evens, E.; Stankevitz, K.; Parker, C. Using the Unmanned Aerial Vehicle Delivery Decision Tool to Consider Transporting Medical Supplies via Drone. Glob. Health Sci. Pract. 2019, 7, 500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Voß, J.P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E.H.M. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc. Chang. 2007, 74, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Christensen, C.M. The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail; The Management of Innovation and Change Series; Harvard Business School Press: Boston, MA, USA, 1997. [Google Scholar]
- Anderson, P.; Tushman, M.L. Technological Discontinuities And Dominant Designs: A Cyclical Model of Technological Change. Adm. Sci. Q. 1990, 35, 604–633. [Google Scholar] [CrossRef] [Green Version]
- Geels, F.W. Technological Transitions and System Innovations: A Co-Evolutionary and Socio-Technical Analysis; Edward Elgar Publishing: Cheltenham, UK, 2005. [Google Scholar]
- Geels, F.W. Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technol. Forecast. Soc. Chang. 2005, 72, 681–696. [Google Scholar] [CrossRef]
- Geels, F.W.; Schot, J. Typology of sociotechnical transition pathways. Res. Policy 2007, 36, 399–417. [Google Scholar] [CrossRef]
- Haula, K.; Agbozo, E. A systematic review on unmanned aerial vehicles in Sub-Saharan Africa: A socio-technical perspective. Technol. Soc. 2020, 63, 101357. [Google Scholar] [CrossRef]
- Ayamga, M.; Akaba, S.; Nyaaba, A.A. Multifaceted applicability of drones: A review. Technol. Forecast. Soc. Chang. 2021, 167, 120677. [Google Scholar] [CrossRef]
- Ghelichi, Z.; Gentili, M.; Mirchandani, P.B. Logistics for a fleet of drones for medical item delivery: A case study for Louisville, KY. Comput. Oper. Res. 2021, 135, 105443. [Google Scholar] [CrossRef]
- Kuru, K. Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework. IEEE Access 2021, 9, 6571–6595. [Google Scholar] [CrossRef]
- Geels, F.W. Major system change through stepwise reconfiguration: A multi-level analysis of the transformation of American factory production (1850–1930). Technol. Soc. 2006, 28, 445–476. [Google Scholar] [CrossRef]
- Geels, F.W.; Sovacool, B.K.; Schwanen, T.; Sorrell, S. Sociotechnical transitions for deep decarbonization. Science 2017, 357, 1242–1244. [Google Scholar] [CrossRef] [PubMed]
- Geels, F.; Raven, R. Non-linearity and Expectations in Niche-Development Trajectories: Ups and Downs in Dutch Biogas Development (1973–2003). Technol. Anal. Strateg. Manag. 2006, 18, 375–392. [Google Scholar] [CrossRef]
- Gaziulusoy, A.İ. System Innovation for Sustainability: A Scenario Method and a Workshop Process for Product Development Teams. Ph.D. Thesis (Monograph), University of Auckland, Auckland, New Zealand, 2010. [Google Scholar]
- Tuama, D.Ó. Ripples through the city: Understanding the processes set in motion through embedding a public bike sharing scheme in a city. Res. Transp. Bus. Manag. 2015, 15, 15–27. [Google Scholar] [CrossRef]
- Geels, F.W. Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- Rotmans, J.; Kemp, R.P.M.; van Asselt, M. More Evolution than Revolution: Transition Management in Public Policy. Foresight Lond. J. Insur. Risk Manag. 2001, 3, 15–31. [Google Scholar] [CrossRef]
- Johannessen, K.A.; Comtet, H.; Fosse, E. A Drone Logistic Model for Transporting the Complete Analytic Volume of a Large-Scale University Laboratory. Int. J. Environ. Res. Public Health 2021, 18, 4580. [Google Scholar] [CrossRef]
- Prayag, G.; Ozanne, L.K. A systematic review of peer-to-peer (P2P) accommodation sharing research from 2010 to 2016: Progress and prospects from the multi-level perspective. J. Hosp. Mark. Manag. 2018, 27, 649–678. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Lazar, J. Research Methods in Human-Computer Interaction, 2nd ed.; Morgan Kaufmann: Cambridge, MA, USA, 2017. [Google Scholar]
- Hsieh, H.F.; Shannon, S.E. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Mayring, P. Qualitative content analysis: Demarcation, varieties, developments. Forum Qual. Soc. Res. 2019, 20, 16. [Google Scholar] [CrossRef]
- Ferreras, L.E. iTRANS: Proactive ITS Based on Drone Technology to Solve Urban Transportation Challenge. In Disrupting Mobility: Impacts of Sharing Economy and Innovative Transportation on Cities; Meyer, G., Shaheen, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 323–333. [Google Scholar] [CrossRef]
- Vandenberg, O.; Durand, G.; Hallin, M.; Diefenbach, A.; Gant, V.; Murray, P.; Kozlakidis, Z.; van Belkum, A.; Vandenberg, O. Consolidation of Clinical Microbiology Laboratories and Introduction of Transformative Technologies. Clin. Microbiol. Rev. 2020, 33, e00057-19. [Google Scholar] [CrossRef]
- Mishra, D.; Natalizio, E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements. Comput. Netw. 2020, 182, 107451. [Google Scholar] [CrossRef]
- Khisa, S.; Moh, S. Medium Access Control Protocols for the Internet of Things Based on Unmanned Aerial Vehicles: A Comparative Survey. Sensors 2020, 20, 5586. [Google Scholar] [CrossRef]
- Syed, F.; Gupta, S.K.; Alsamhi, S.; Rashid, M.; Liu, X. A survey on recent optimal techniques for securing unmanned aerial vehicles applications. Trans. Emerg. Telecommun. Technol. 2020, 32, e4133. [Google Scholar] [CrossRef]
- Mion, F.U. Flying drones to exchange lab samples service innovation by the Swiss multisite hospital EOC. In Service Design and Service Thinking in Healthcare and Hospital Management; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Zègre-Hemsey, J.; Bogle, B.; Cunningham, C.; Snyder, K.; Rosamond, W. Delivery of Automated External Defibrillators (AED) by Drones: Implications for Emergency Cardiac Care. Curr. Cardiovasc. Risk Rep. 2018, 12, 1–5. [Google Scholar] [CrossRef]
- Poljak, M.; Šterbenc, A. Use of drones in clinical microbiology and infectious diseases: Current status, challenges and barriers. Clin. Microbiol. Infect. 2020, 26, 425–430. [Google Scholar] [CrossRef]
- Van de Voorde, P.; Gautama, S.; Momont, A.; Ionescu, C.M.; De Paepe, P.; Fraeyman, N. The drone ambulance [A-UAS]: Golden bullet or just a blank? Resuscitation 2017, 116, 46–48. [Google Scholar] [CrossRef]
- Shaw, B.; Chisholm, O. Creeping Through the Backdoor: Disruption in Medicine and Health. Front. Pharmacol. 2020, 11, 818. [Google Scholar] [CrossRef] [PubMed]
- Balasingam, M. Drones in medicine—The rise of the machines. Int. J. Clin. Pract. 2017, 71, e12989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.; Gertz, S.D.; Furer, A.; Bader, T.; Frenkel, H.; Chen, J.; Glassberg, E.; Nachman, D. The promising future of drones in prehospital medical care and its application to battlefield medicine. J. Trauma Acute Care Surg. 2019, 87, S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Nentwich, M.; Hórvath, D.M. Delivery Drones from a Technology Assessment Perspective; Overview Report; Institute for Technology Assessment of the Austrian Academy of Sciences (ITA): Vienna, Austria, 2018. [Google Scholar]
- Flahault, A.; Geissbuhler, A.; Guessous, I.; Guérin, P.J.; Bolon, I.; Salathé, M.; Escher, G. Precision global health in the digital age. Swiss Med. Wkly. 2017, 147, w14423. [Google Scholar] [CrossRef]
- Bhavnani, S.P.; Munoz, D.; Bagai, A. Data Science in Healthcare: Implications for Early Career Investigators. Circ. Cardiovasc. Qual. Outcomes 2016, 9, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Cawthorne, D.; Wynsberghe, A.R. From HealthDrone to FrugalDrone: Value-Sensitive Design of a Blood Sample Transportation Drone. In Proceedings of the 2019 IEEE International Symposium on Technology and Society (ISTAS), Medford, Boston, MA, USA, 15–16 November 2019; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Truog, S.; Maxim, L.; Matemba, C.; Blauvelt, C.; Ngwira, H.; Makaya, A.; Moreira, S.; Lawrence, E.; Ailstock, G.; Weitz, A.; et al. Insights Before Flights: How Community Perceptions Can Make or Break Medical Drone Deliveries. Drones 2020, 4, 51. [Google Scholar] [CrossRef]
- Mateen, F.J.; Leung, K.H.B.; Vogel, A.C.; Cissé, A.F.; Chan, T.C.Y. A drone delivery network for antiepileptic drugs: A framework and modelling case study in a low-income country. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 308–314. [Google Scholar] [CrossRef]
- Faramondi, L.; Oliva, G.; Ardito, L.; Crescenzi, A.; Caricato, M.; Tesei, M.; Muda, A.O.; Setola, R. Use of drone to improve healthcare efficiency and sustainability. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 1783–1788. [Google Scholar]
- Carrillo-Larco, R.M.; Moscoso-Porras, M.; Taype-Rondan, A.; Ruiz-Alejos, A.; Bernabe-Ortiz, A. The use of unmanned aerial vehicles for health purposes: A systematic review of experimental studies. Glob. Health Epidemiol. Genom. 2018, 3, e13. [Google Scholar] [CrossRef]
- Greaves, R.F.; Bernardini, S.; Ferrari, M.; Fortina, P.; Gouget, B.; Gruson, D.; Lang, T.; Loh, T.P.; Morris, H.A.; Park, J.Y.; et al. Key questions about the future of laboratory medicine in the next decade of the 21st century: A report from the IFCC-Emerging Technologies Division. Clin. Chim. Acta 2019, 495, 570–589. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.J.; Treiblmaier, H. Drones for supply chain management and logistics: A review and research agenda. Int. J. Logist. 2021, 1–24. [Google Scholar] [CrossRef]
- Wang, N.; Christen, M.; Hunt, M. Ethical Considerations Associated with “Humanitarian Drones”: A Scoping Literature Review. Sci. Eng. Ethics 2021, 27, 51. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.A.; Shah, K.; Mauntel, L.C.C.; Shah, S.A. Drone delivery of Medications: Review of the landscape and legal considerations. Am. J. Health-Syst. Pharm. 2018, 75, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Oigbochie, A.E.; Odigie, E.; Adejumo, B.I.G. Importance of Drones in Healthcare Delivery Amid a Pandemic: Current and Generation Next Application. Open J. Med. Res. 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Zailani, M.A.H.; Sabudin, R.Z.A.R.; Rahman, R.A.; Saiboon, I.M.; Ismail, A.; Mahdy, Z.A. Drone for medical products transportation in maternal healthcare: A systematic review and framework for future research. Medicine 2020, 99, e21967. [Google Scholar] [CrossRef]
- Maclaine Pont, P.; van Est, R.; Deuten, J. Shaping Socio-Technical Innovation through Policy: Essay Commissioned by the Department of Knowledge, Innovation and Strategy of the Dutch Ministry of Infrastructure and the Environment; Rathenau Institute: The Hague, The Netherlands, 2016. [Google Scholar]
- Federal Aviation Administration. U.S. Transportation Secretary Elaine L. Chao Announces FAA Certification of Commercial Package Delivery. 2019. Available online: https://www.faa.gov/newsroom/us-transportation-secretary-elaine-l-chao-announces-faa-certification-commercial-package (accessed on 27 November 2021).
- Lavallée, C. The EU Policy for Civil Drones: The Challenge of Governing Emerging Technologies. 2019. Available online: https://brussels-school.be/publications/policy-briefs/eu-policy-civil-drones-challenge-governing-emerging-technologies (accessed on 27 November 2021).
- Loh, T.P.; Saw, S.; Chai, V.; Sethi, S.K. Impact of phlebotomy decision support application on sample collection errors and laboratory efficiency. Clin. Chim. Acta 2011, 412, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Piva, E.; Tosato, F.; Plebani, M. Pre-analytical phase: The automated ProTube device supports quality assurance in the phlebotomy process. Clin. Chim. Acta 2015, 451, 287–291. [Google Scholar] [CrossRef]
- Balter, M.L.; Chen, A.I.; Fromholtz, A.; Gorshkov, A.; Maguire, T.J.; Yarmush, M.L. System design and development of a robotic device for automated venipuncture and diagnostic blood cell analysis. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; Volume 2016, pp. 514–520. [Google Scholar] [CrossRef] [Green Version]
- Comtet, H.E.; Johannessen, K.A. The Moderating Role of Pro-Innovative Leadership and Gender as an Enabler for Future Drone Transports in Healthcare Systems. Int. J. Environ. Res. Public Health 2021, 18, 2637. [Google Scholar] [CrossRef]
- Martins, B.O.; Lavallée, C.; Silkoset, A. Drone Use for COVID-19 Related Problems: Techno-solutionism and its Societal Implications. Glob. Policy 2021, 12, 603–612. [Google Scholar] [CrossRef]
- Öztekin, E.E.; Gaziulusoy, A.İ. Designing Transitions Bottom-up: The agency of design in formation and proliferation of niche practices. Des. J. 2019, 22, 1659–1674. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.M.; Levinthal, D.A. Absorptive Capacity: A New Perspective on Learning and Innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Geels, F.W.; Eames, M.; Steward, F.; Monaghan, A. The Feasibility of Systems Thinking in Sustainable Consumption and Production Policy: A Report to the Department for Environment, Food and Rural Affairs; Report; Defra: London, UK, 2008. [Google Scholar]
- Schot, J.; Geels, F.W. Strategic niche management and sustainable innovation journeys: Theory, findings, research agenda, and policy. Technol. Anal. Strateg. Manag. 2008, 20, 537–554. [Google Scholar] [CrossRef]
- Laakso, S.; Aro, R.; Heiskanen, E.; Kaljonen, M. Reconfigurations in sustainability transitions: A systematic and critical review. Sustain. Sci. Pract. Policy 2021, 17, 15–31. [Google Scholar] [CrossRef]
- Ling, G.; Draghic, N. Aerial drones for blood delivery. Transfusion 2019, 59, 1608–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyaaba, A.A.; Ayamga, M. Intricacies of medical drones in healthcare delivery: Implications for Africa. Technol. Soc. 2021, 66, 101624. [Google Scholar] [CrossRef]
- Zailani, M.A.; Azma, R.Z.; Aniza, I.; Rahana, A.R.; Ismail, M.S.; Shahnaz, I.S.; Chan, K.S.; Jamaludin, M.; Mahdy, Z.A. Drone versus ambulance for blood products transportation: An economic evaluation study. BMC Health Serv. Res. 2021, 21, 1308. [Google Scholar] [CrossRef]
- Schierbeck, S.; Hollenberg, J.; Nord, A.; Svensson, L.; Nordberg, P.; Ringh, M.; Forsberg, S.; Lundgren, P.; Axelsson, C.; Claesson, A. Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. Eur. Heart J. 2021, 42, ehab724.0656. [Google Scholar] [CrossRef]
- Murphy, K.; Jain, N. Riding The Disruption Wave In Healthcare. 2018. Available online: https://www.forbes.com/sites/baininsights/2018/05/01/riding-the-disruption-wave-in-healthcare/ (accessed on 22 November 2021).
- Floreano, D.; Wood, R.J. Science, technology and the future of small autonomous drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Radnor, Z.; Walley, P. Learning to walk before we try to run: Adapting lean for the public sector. Public Money Manag. 2008, 28, 13–20. [Google Scholar]
- Casey, J.T.; Brinton, T.S.; Gonzalez, C.M. Utilization of lean management principles in the ambulatory clinic setting. Nat. Clin. Pract. Urol. 2009, 6, 146. [Google Scholar] [CrossRef]
- Eller, A. Rapid assessment and disposition: Applying LEAN in the emergency department. J. Healthc. Qual. 2009, 31, 17–22. [Google Scholar] [CrossRef]
- Waldhausen, J.H.; Avansino, J.R.; Libby, A.; Sawin, R.S. Application of lean methods improves surgical clinic experience. J. Pediatr. Surg. 2010, 45, 1420–1425. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Bracci, E. Implementing lean six sigma in healthcare: Issues from Italy. Public Money Manag. 2013, 33, 361–368. [Google Scholar] [CrossRef]
- Bhat, S.; Gijo, E.V.; Jnanesh, N.A. Application of Lean Six Sigma methodology in the registration process of a hospital. Int. J. Product. Perform. Manag. 2014, 63, 613–643. [Google Scholar] [CrossRef]
- Costa, L.B.M.; Godinho Filho, M. Lean healthcare: Review, classification and analysis of literature. Prod. Plan. Control 2016, 27, 823–836. [Google Scholar] [CrossRef]
- Moraros, J.L.; Nwankwo, C.M. Lean interventions in healthcare: Do they actually work? A systematic literature review. Int. J. Qual. Health Care 2016, 28, 150–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, G.; Desai, T.N. Lean Six Sigma: A categorized review of the literature. Int. J. Lean Six Sigma 2016, 7, 2–24. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. The Processes of Technological Innovation; Issues in Organization and Management Series; Lexington Books: Lexington, MA, USA, 1990. [Google Scholar]
- Osterwalder, A.; Osterwalder, A.; Pigneur, Y.; Bernarda, G.; Smith, A.; Papadakos, T. Value Proposition Design: How to Create Products and Services Customers Want; Strategyzer Series; WILEY: New York, NY, USA, 2015. [Google Scholar]
- den Hoven, J.V.; Lokhorst, G.J.; de Poel, I.V. Engineering and the Problem of Moral Overload. Sci. Eng. Ethics 2011, 18, 143–155. [Google Scholar] [CrossRef] [Green Version]
Count | Percent | Keyword |
---|---|---|
20 | 22% | Drones (including UAV, UAS, integration, communication, design) |
16 | 17% | Technology (including AI, IoT, Machine Learning, Blockchain, 5G, automation, innovation, and disruption) |
9 | 10% | Healthcare (including laboratory, microbiology, health systems, and services) |
7 | 8% | Logistics (including transport, delivery, and supply chains) |
40 | 43% | 40 unique keywords: open science; biobanking; iTRANS; bystander CPR RPAS; Canada; prehospital care; throughput; cell phone data; intelligent transportation systems (ITS) platform; learning health care system; community engagement; mobile microbiology; consolidation; policy; Danish public healthcare; remote medicine; surveillance; disasters; battlefield medicine; emergencies; massive open online education; emerging infectious diseases; medium access control; EMS dispatcher; noncommunicable diseases; energy efficiency; out-of-hospital cardiac arrest public access defibrillation AED; epilepsy; portable instruments; ethical framework; public access defibrillation; global health precision medicine; health applications; sudden cardiac arrest; telemedicine; automatic external defibrillation; United States; value-sensitive design (VSD); user experience; values hierarchy |
92 | 100% |
Dimension | Category | Author |
---|---|---|
Clinic | Digitalization | Ferreras [51]; Gruson [24]; Vandenberg et al. [52] |
Integration of different technologies and services | Eichleay et al. [25]; Mishra et al. [53]; Ferreras [51]; Khisa et al. [54]; Syed et al. [55] | |
Public Acceptance | Mion [56]; Zegre-Hemsey et al. [57]; Poljak et al. [58] Van de Voorde et al. [59]; Shawn et al. [60] | |
Regulation/Legislation | Balasingam [61]; Braun et al. [62]; Nentwich et al. [63] | |
Institution | Integration challenges | Vandenberg et al. [52]; Flahault et al. [64] |
Facilitating innovation processes | Bhavnani et al. [65]; Mishra et al. [53]; Cawthorne et al. [66]; Mion [56]; Johannessen et al. [44] | |
Collaboration | Ferreras [51]; Braun et al. [62]; Hiebert et al. [19]; Mion [56]; Truog et al. [67] | |
Health care | Adoption | Mion [56]; Hiebert et al. [19]; Johannessen et al. [44] |
Diffusion/Acceleration | Flahault et al. [64]; Mateen et al. [68]; Mion [56] | |
Change and transitions in relation to ethics | Faramondi et al. [69]; Cawthorne et al. [66]; Eichleay et al. [25]; Carrillo-Larco et al. [70]; Mishra et al. [53]; Greaves et al. [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comtet, H.E.; Johannessen, K.-A. A Socio-Analytical Approach to the Integration of Drones into Health Care Systems. Information 2022, 13, 62. https://doi.org/10.3390/info13020062
Comtet HE, Johannessen K-A. A Socio-Analytical Approach to the Integration of Drones into Health Care Systems. Information. 2022; 13(2):62. https://doi.org/10.3390/info13020062
Chicago/Turabian StyleComtet, Hans E., and Karl-Arne Johannessen. 2022. "A Socio-Analytical Approach to the Integration of Drones into Health Care Systems" Information 13, no. 2: 62. https://doi.org/10.3390/info13020062
APA StyleComtet, H. E., & Johannessen, K.-A. (2022). A Socio-Analytical Approach to the Integration of Drones into Health Care Systems. Information, 13(2), 62. https://doi.org/10.3390/info13020062