A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks
Abstract
:1. Introduction
- A novel proposed on-the-fly framework that is aligned with conversational AI assistance and automation;
- A conversational orchestrator to convert non-technical requirements into technical functional requirements using the Cloud Native Environment (CNE), Natural Language Processing (NLP), and micro-services;
- A performance evolution of the suggested framework to make it reliable and scalable.
2. Related Work
3. Proposed Framework
4. Implementation
5. Performance Evaluation
- Performance: The image size may influence the VMs’ boot times, memory requirements, and disk space. Larger images may require more disk space, memory, and longer boot times than smaller images. The usefulness and efficiency of the VMs can be enhanced by the additional features and apps that may be presented in larger images;
- Cost/price: Since some cloud providers base their prices on the amount of storage and bandwidth an image uses, their size can impact how much a cloud service will cost. Due to their higher storage and bandwidth requirements, larger images could have higher expenses than smaller images.
- Total duration: Indicates how long it takes to complete the scenario as a whole and each atomic action;
- Min: The minimal value of gained time for iterations of the scenario/atomic operation;
- Max: The amount of time spent on scenario/atomic action iterations is the greatest;
- Average: The median is the average time spent on scenario/atomic action iterations;
- 90%ile: 90% of scenario/atomic action iterations acquired time less than this value, making it the lowest duration value;
- 95%ile: The lowest duration number is 95%ile, which indicates that 95% of scenario/atomic action iterations took longer than this amount of time;
- Success: A 100% success rating will be displayed if a particular scenario runs successfully throughout all iterations. Failure is not a 100% guarantee of success if some iterations are unsuccessful;
- Count: a display of the total number of iterations.
5.1. Service Authentication Experiments
5.2. Network Experiments
5.3. Service-1 Deployment Experiments
VNF Assignment to Service-1
5.4. Service-2 Deployment Experiments
5.4.1. VNF Assignment to Service-2
5.4.2. Service-2 Migration Experiments
5.5. Service-3 Deployment Experiments
5.5.1. VNF Assignment to Service-3
5.5.2. Service-3 Migration Experiments
5.6. Service-4 Deployment Experiments
VNF Assignment to Service-4
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sodhro, A.H.; Pirbhulal, S.; Luo, Z.; Muhammad, K.; Zahid, N.Z. Toward 6G architecture for energy-efficient communication in IoT-enabled smart automation systems. IEEE Internet Things J. 2020, 8, 5141–5148. [Google Scholar] [CrossRef]
- Peltonen, E.; Bennis, M.; Capobianco, M.; Debbah, M.; Ding, A.; Gil-Castiñeira, F.; Jurmu, M.; Karvonen, T.; Kelanti, M.; Kliks, A.; et al. 6G white paper on edge intelligence. In 6G Flagship; University of Oulu: Oulu, Finland, 2020. [Google Scholar]
- Yrjola, S.; Ahokangas, P.; Matinmikko-Blue, M.; Jurva, R.; Kant, V.; Karppinen, P.; Kinnula, M.; Koumaras, H.; Rantakokko, M.; Ziegler, V.; et al. White paper on business of 6G. In 6G Flagship; University of Oulu: Oulu, Finland, 2020. [Google Scholar]
- Banafaa, M.; Shayea, I.; Din, J.; Azmi, M.H.; Alashbi, A.; Daradkeh, Y.I.; Alhammadi, A. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities. Alex. Eng. J. 2022, 64, 245–274. [Google Scholar] [CrossRef]
- Rong, B. 6G: The next horizon: From connected people and things to connected intelligence. IEEE Wirel. Commun. 2021, 28, 8. [Google Scholar] [CrossRef]
- Pouttu, A.; Burkhardt, F.; Patachia, C.; Mendes, L.; Brazil, G.R.; Pirttikangas, S.; Jou, E.; Kuvaja, P.; Finland, F.T.; Heikkilä, M.; et al. 6G White Paper on Validation and Trials for Verticals towards 2030’s. In 6G Flagship; University of Oulu: Oulu, Finland, 2020; Volume 4. [Google Scholar]
- Ylianttila, M.; Kantola, R.; Gurtov, A.; Mucchi, L.; Oppermann, I.; Yan, Z.; Nguyen, T.H.; Liu, F.; Hewa, T.; Liyanage, M.; et al. 6g white paper: Research challenges for trust, security and privacy. In 6G Flagship; University of Oulu: Oulu, Finland, 2020. [Google Scholar]
- Rajatheva, N.; Atzeni, I.; Bjornson, E.; Bourdoux, A.; Buzzi, S.; Dore, J.B.; Erkucuk, S.; Fuentes, M.; Guan, K.; Hu, Y.; et al. White paper on broadband connectivity in 6G. In 6G Flagship; University of Oulu: Oulu, Finland, 2020. [Google Scholar]
- Shahzadi, S.; Iqbal, M.; Chaudhry, N.R. 6G vision: Toward future collaborative cognitive communication (3c) systems. IEEE Commun. Stand. Mag. 2021, 5, 60–67. [Google Scholar] [CrossRef]
- Haseeb, K.; Rehman, A.; Saba, T.; Bahaj, S.A.; Wang, H.; Song, H. Efficient and trusted autonomous vehicle routing protocol for 6G networks with computational intelligence. ISA Trans. 2023, 132, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kumar, N.; Mohsan, S.A.H.; Khan, W.U.; Nasralla, M.M.; Alsharif, M.H.; Żywiołek, J.; Ullah, I. Swarm of UAVs for network management in 6G: A technical review. IEEE Trans. Netw. Serv. Manag. 2022, 20, 741–761. [Google Scholar] [CrossRef]
- Asim, M.; ELAffendi, M.; Abd El-Latif, A.A. Multi-IRS and multi-UAV-assisted MEC system for 5G/6G networks: Efficient joint trajectory optimization and passive beamforming framework. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4553–4564. [Google Scholar] [CrossRef]
- Chirivella-Perez, E.; Calero, J.M.A.; Wang, Q.; Gutiérrez-Aguado, J. Orchestration architecture for automatic deployment of 5G services from bare metal in mobile edge computing infrastructure. Wirel. Commun. Mob. Comput. 2018, 2018, 5786936. [Google Scholar] [CrossRef]
- Shahzadi, S.; Iqbal, M.; Dagiuklas, T.; Qayyum, Z.U. Multi-access edge computing: Open issues, challenges and future perspectives. J. Cloud Comput. 2017, 6, 30. [Google Scholar] [CrossRef]
- Duan, Y.; Fu, G.; Zhou, N.; Sun, X.; Narendra, N.C.; Hu, B. Everything as a service (XaaS) on the cloud: Origins, current and future trends. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA, 27 June–2 July 2015; pp. 621–628. [Google Scholar]
- Ranjan, R.; Benatallah, B.; Dustdar, S.; Papazoglou, M.P. Cloud resource orchestration programming: Overview, issues, and directions. IEEE Internet Comput. 2015, 19, 46–56. [Google Scholar] [CrossRef]
- Khoshkbarforoushha, A.; Wang, M.; Ranjan, R.; Wang, L.; Alem, L.; Khan, S.U.; Benatallah, B. Dimensions for evaluating cloud resource orchestration frameworks. Computer 2016, 49, 24–33. [Google Scholar] [CrossRef]
- Weerasiri, D.; Barukh, M.C.; Benatallah, B.; Sheng, Q.Z.; Ranjan, R. A taxonomy and survey of cloud resource orchestration techniques. ACM Comput. Surv. (CSUR) 2017, 50, 26. [Google Scholar] [CrossRef]
- Nawaz, F.; Mohsin, A.; Janjua, N.K. Service description languages in cloud computing: State-of-the-art and research issues. Serv. Oriented Comput. Appl. 2019, 13, 109–125. [Google Scholar] [CrossRef]
- Wurster, M.; Breitenbücher, U.; Falkenthal, M.; Krieger, C.; Leymann, F.; Saatkamp, K.; Soldani, J. The essential deployment metamodel: A systematic review of deployment automation technologies. SICS Softw.-Intensive Cyber-Phys. Syst. 2020, 35, 63–75. [Google Scholar] [CrossRef]
- Benfenatki, H.; Da Silva, C.F.; Kemp, G.; Benharkat, A.N.; Ghodous, P.; Maamar, Z. MADONA: A method for automated provisioning of cloud-based component-oriented business applications. Serv. Oriented Comput. Appl. 2017, 11, 87–100. [Google Scholar] [CrossRef]
- Petcu, D.; Di Martino, B.; Venticinque, S.; Rak, M.; Máhr, T.; Lopez, G.E.; Brito, F.; Cossu, R.; Stopar, M.; Šperka, S.; et al. Experiences in building a mOSAIC of clouds. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 12. [Google Scholar] [CrossRef]
- Kang, J.M.; Bannazadeh, H.; Leon-Garcia, A. Savi testbed: Control and management of converged virtual ict resources. In Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, Belgium, 27–31 May 2013; pp. 664–667. [Google Scholar]
- Qadeer, A.; Waqar Malik, A.; Ur Rahman, A.; Mian Muhammad, H.; Ahmad, A. Virtual Infrastructure Orchestration For Cloud Service Deployment. Comput. J. 2020, 63, 295–307. [Google Scholar] [CrossRef]
- Puppet. Available online: https://puppet.com/ (accessed on 18 June 2023).
- Chef. Available online: https://www.chef.io/ (accessed on 5 July 2023).
- Jcloud. Available online: https://jclouds.apache.org (accessed on 5 July 2023).
- Libcloud. Available online: http://libcloud.apache.org/ (accessed on 5 July 2023).
- JujuCharms. Available online: https://jujucharms.com/ (accessed on 5 July 2023).
- Ansible. Available online: https://www.ansible.com/ (accessed on 5 July 2023).
- Terraform. Available online: https://www.terraform.io/ (accessed on 5 July 2023).
- Diaz-Montes, J.; AbdelBaky, M.; Zou, M.; Parashar, M. Cometcloud: Enabling software-defined federations for end-to-end application workflows. IEEE Internet Comput. 2015, 19, 69–73. [Google Scholar] [CrossRef]
- Morabito, R. Virtualization on internet of things edge devices with container technologies: A performance evaluation. IEEE Access 2017, 5, 8835–8850. [Google Scholar] [CrossRef]
[25] | 2005 | Puppet | Declarative approach | Provides automated infrastructure and continues delivery | Reduce the threat of external attacks | Limited flexibility |
[26] | 2009 | Chef | Declarative and imperative approach | Configuration management tool | High availability | Limited flexibility |
[27] | 2009 | JCLoud | Cloud APIs and libraries | To support multi-cloud environment and portability | Run time portability | No decentralization and network infrastructure |
[28] | 2009 | LibCLoud | Cloud APIs and libraries | To support multi-cloud environment and portability | Application portability | No decentralization and network infrastructure |
[29] | 2010 | Juju | Orchestration based tool | Components deployment using charms | Easy and quick deployment of cloud services | Limited flexibility |
[30] | 2012 | Ansible | Declarative and imperative approach | Configuration management tool | Easy with multi-playbook workflow | Limited flexibility |
[22] | 2013 | mOSAIC | Cloud APIs and libraries | Multi-cloud resource management to support portability of applications | Elasticity and auto scaling | Lack of network infrastructure, security and automated management |
[23] | 2013 | SAVI | Component-oriented approach | Built on the Virtualized Application Networking Infrastructure (VANI) | Flexible and versatile infrastructure for future applications | Requires highly technical skills |
[31] | 2014 | Terraform | Declarative approach | Provides infrastructure as a code | Provides support for different infrastructure providers | Difficult to manage states of resources |
[32] | 2015 | CometCloud | Layers approach | Autonomic framework to support end-to-end workflow | Heterogeneous and flexible | Lack of network infrastructure and auto scaling |
[33] | 2017 | MADONA | Component-oriented approach | Automatic provisioning of cloud applications | Reduces technical knowledge | High provisioning time |
[24] | 2020 | Virtual Infrastructure Orchestration | Scripts-based approach | Provides infrastructure automation of complex procedures | Reduces deployment time and minimize manual efforts | Limited flexibility |
[21] | Y | Y | Y | N | N | − | Y | N | N | Y | Python |
[22] | Y | Y | Y | N | N | Y | N | N | N | Y | Java |
[32] | Y | Y | Y | N | N | N | N | Y | N | N | Java |
[23] | Y | N | N | Y | Y | Y | N | N | N | N | Java and Python |
[24] | Y | Y | Y | Y | N | Y | N | N | Y | N | Python |
[31] | Y | Y | Y | Y | − | Y | N | N | Y | N | Go |
[25] | Y | Y | − | N | Y | − | N | N | Y | N | Ruby |
[26] | Y | Y | N | N | Y | − | N | N | Y | N | Ruby |
[27] | Y | Y | N | N | Y | N | N | N | Y | N | Java |
[28] | Y | Y | N | N | Y | N | N | N | Y | N | Python |
[29] | Y | Y | − | N | Y | − | N | N | Y | N | Python |
[30] | Y | Y | N | N | N | − | N | N | Y | N | Python |
1 | Host OS | Linux Server |
2 | Cloud Platform | OpenStack |
3 | Linux Container | Docker |
4 | Orchestration Deployment | Multi-Cloud SDK |
5 | Conversational Platform | Rasa NLU/Rasa Core |
6 | Programming Language | Python |
Service 1 | 371.8 MB | m1.large | QEMU | Private |
Service 2 | 12.6 MB | m1.tiny | QEMU | Private |
Service 3 | 23.5 KB | m1.tiny | Docker (LXC) | Private |
Service 4 | 469.3 MB | m1.tiny | Docker (LXC) | Private |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzadi, S.; Chaudhry, N.R.; Iqbal, M. A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks. Sensors 2023, 23, 7366. https://doi.org/10.3390/s23177366
Shahzadi S, Chaudhry NR, Iqbal M. A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks. Sensors. 2023; 23(17):7366. https://doi.org/10.3390/s23177366
Chicago/Turabian StyleShahzadi, Sonia, Nauman Riaz Chaudhry, and Muddesar Iqbal. 2023. "A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks" Sensors 23, no. 17: 7366. https://doi.org/10.3390/s23177366
APA StyleShahzadi, S., Chaudhry, N. R., & Iqbal, M. (2023). A Novel 6G Conversational Orchestration Framework for Enhancing Performance and Resource Utilization in Autonomous Vehicle Networks. Sensors, 23(17), 7366. https://doi.org/10.3390/s23177366