Computer Science > Machine Learning
[Submitted on 7 Dec 2023]
Title:Coordination-free Decentralised Federated Learning on Complex Networks: Overcoming Heterogeneity
View PDF HTML (experimental)Abstract:Federated Learning (FL) is a well-known framework for successfully performing a learning task in an edge computing scenario where the devices involved have limited resources and incomplete data representation. The basic assumption of FL is that the devices communicate directly or indirectly with a parameter server that centrally coordinates the whole process, overcoming several challenges associated with it. However, in highly pervasive edge scenarios, the presence of a central controller that oversees the process cannot always be guaranteed, and the interactions (i.e., the connectivity graph) between devices might not be predetermined, resulting in a complex network structure. Moreover, the heterogeneity of data and devices further complicates the learning process. This poses new challenges from a learning standpoint that we address by proposing a communication-efficient Decentralised Federated Learning (DFL) algorithm able to cope with them. Our solution allows devices communicating only with their direct neighbours to train an accurate model, overcoming the heterogeneity induced by data and different training histories. Our results show that the resulting local models generalise better than those trained with competing approaches, and do so in a more communication-efficient way.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.