Mathematics > Numerical Analysis
[Submitted on 29 Aug 2024]
Title:Evaporation-driven tear film thinning and breakup in two space dimensions
View PDF HTML (experimental)Abstract:Evaporation profiles have a strong effect on tear film thinning and breakup (TBU), a key factor in dry eye disease (DED). In experiments, TBU is typically seen to occur in patterns that locally can be circular (spot), linear (streak), or intermediate . We investigate a two-dimensional (2D) model of localized TBU using a Fourier spectral collocation method to observe how the evaporation distribution affects the resulting dynamics of tear film thickness and osmolarity, among other variables. We find that the dynamics are not simply an addition of individual 1D solutions of independent TBU events, and we show how the TBU quantities of interest vary continuously from spots to streaks for the shape of the evaporation distribution. We also find a significant speedup by using a proper orthogonal decomposition to reduce the dimension of the numerical system. The speedup will be especially useful for future applications of the model to inverse problems, allowing the clinical observation at scale of quantities that are thought to be important to DED but not directly measurable in vivo within TBU locales.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.