Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Jun 2022]
Title:REVECA -- Rich Encoder-decoder framework for Video Event CAptioner
View PDFAbstract:We describe an approach used in the Generic Boundary Event Captioning challenge at the Long-Form Video Understanding Workshop held at CVPR 2022. We designed a Rich Encoder-decoder framework for Video Event CAptioner (REVECA) that utilizes spatial and temporal information from the video to generate a caption for the corresponding the event boundary. REVECA uses frame position embedding to incorporate information before and after the event boundary. Furthermore, it employs features extracted using the temporal segment network and temporal-based pairwise difference method to learn temporal information. A semantic segmentation mask for the attentional pooling process is adopted to learn the subject of an event. Finally, LoRA is applied to fine-tune the image encoder to enhance the learning efficiency. REVECA yielded an average score of 50.97 on the Kinetics-GEBC test data, which is an improvement of 10.17 over the baseline method. Our code is available in this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.