Computer Science > Data Structures and Algorithms
[Submitted on 15 Sep 2022]
Title:$\tilde{O}(n+\mathrm{poly}(k))$-time Algorithm for Bounded Tree Edit Distance
View PDFAbstract:Computing the edit distance of two strings is one of the most basic problems in computer science and combinatorial optimization. Tree edit distance is a natural generalization of edit distance in which the task is to compute a measure of dissimilarity between two (unweighted) rooted trees with node labels. Perhaps the most notable recent application of tree edit distance is in NoSQL big databases, such as MongoDB, where each row of the database is a JSON document represented as a labeled rooted tree, and finding dissimilarity between two rows is a basic operation. Until recently, the fastest algorithm for tree edit distance ran in cubic time (Demaine, Mozes, Rossman, Weimann; TALG'10); however, Mao (FOCS'21) broke the cubic barrier for the tree edit distance problem using fast matrix multiplication.
Given a parameter $k$ as an upper bound on the distance, an $O(n+k^2)$-time algorithm for edit distance has been known since the 1980s due to the works of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88). The existence of an $\tilde{O}(n+\mathrm{poly}(k))$-time algorithm for tree edit distance has been posed as an open question, e.g., by Akmal and Jin (ICALP'21), who gave a state-of-the-art $\tilde{O}(nk^2)$-time algorithm. In this paper, we answer this question positively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.