Computer Science > Computation and Language
[Submitted on 16 Jun 2023]
Title:Semi-supervised Relation Extraction via Data Augmentation and Consistency-training
View PDFAbstract:Due to the semantic complexity of the Relation extraction (RE) task, obtaining high-quality human labelled data is an expensive and noisy process. To improve the sample efficiency of the models, semi-supervised learning (SSL) methods aim to leverage unlabelled data in addition to learning from limited labelled data points. Recently, strong data augmentation combined with consistency-based semi-supervised learning methods have advanced the state of the art in several SSL tasks. However, adapting these methods to the RE task has been challenging due to the difficulty of data augmentation for RE. In this work, we leverage the recent advances in controlled text generation to perform high quality data augmentation for the RE task. We further introduce small but significant changes to model architecture that allows for generation of more training data by interpolating different data points in their latent space. These data augmentations along with consistency training result in very competitive results for semi-supervised relation extraction on four benchmark datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.