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Abstract—In a wireless sensor network, if the sensors are
deployed uniformly across the network, they experience differ-
ent traffic intensities, thereby, different energy depletion rates
depending on their locations. Usually, the sensors near the sink
tend to deplete their energy sooner; when enough of them
exhaust their energy, they leave holes in the network, causing the
remaining nodes to be disconnected from the sink. One of the
solutions to this energy-hole problem is to deploy the sensors non-
uniformly. This paper describes a method for deciding the sensor
deployment densities so as to equalize the energy consumption
rates of all nodes. The method is general and can be applied to
other objectives and constraints.

Index Terms—Wireless Sensor Networks; Node Deployment;
Energy Holes; Node Density; Energy Management

I. INTRODUCTION

Wireless sensor networks have diverse applications such
as environmental monitoring (e.g., vehicular traffic, wild
life habitat, bridge or earthquake monitoring) and battlefield
surveillance. A sensor network can use multi-hop routing to
deliver the collected information to the collection center, or the
sink. The sensor nodes typically face severe energy constraints.
They usually have limited on-board batteries and are often
deployed in harsh environment where human operators cannot
access them easily to replace the batteries. As a result, much
of the research on sensor networks has focused on how to
prolong their lifetime [1] [2] [3] [4] [5] [6], for instance,
by using energy-efficient routing strategies. The lifetime of
a sensor network has several definitions in the literature. One
of the most popular definitions has it as the interval of time
from the system startup until the first node exhausts its energy,
i.e., the shortest lifetime of all the nodes.

Regardless of the energy-saving strategies used, sensor net-
works often experience unbalanced traffic distribution because
the multi-hop traffic pattern is usually many-to-one [7], [8],
[9]. The traffic transmitted by each sensor node typically
includes both self-generated and relayed traffic. Since the
entire network traffic flows toward the sink, the nodes closer
to the sink tend to experience more traffic. As a result, their
energy consumption rates tend to be higher than the nodes far
away from the sink. This causes the nodes closer to the sink to
deplete their energy sooner, leaving a hole near the sink and
partitioning the whole network while many remaining nodes
still have much energy. The phenomenon is called the energy
hole problem [9], [10]. In [8], the authors observe that when
the nodes one hop away from the sink exhaust all their energy,
the remaining nodes have used only 7% of their energy on
average.

On closer examination, energy holes are most often ob-
served in networks where homogeneous sensor nodes are
uniformly deployed. If we allow non-uniform deployment of
the sensor nodes, by carefully planning the number of nodes
in different places of the network, we can prevent the sensor
nodes near the sink from depleting their energy faster than
others, and hence, resolve the energy hole problem. This
solution may require adding more nodes than what is needed
for coverage in some parts of the network, which means a
higher cost. Hence, the solution makes sense in situations
where inexpensive sensors can be mass-produced or having a
longer network lifetime outweighs the cost of the extra sensors.
Recent advances in micro-electro-mechanical and integration
technologies make the first situation more and more likely to
occur.

This paper contributes to the research area that seeks
to extend network lifetime by deploying the sensors non-
uniformly. The main question to be addressed is how many
nodes per unit area (i.e., the node density) should be deployed
in different parts of the sensor field in order to achieve a
prescribed lifetime-cost objective. The main result of the paper
is a mathematical method for computing the node densities.

The method will be illustrated using an example which has
the particular objective of equalizing the energy consumption
rates of the sensor nodes throughout the network, while
minimizing the total number of nodes deployed. We will show
how to derive the location-dependent node densities in this
case. The result is that all nodes will exhaust their energy at
the same time, and hence, energy holes will not emerge. The
method itself is intended to be general. It can be adapted for
other lifetime-cost objectives and other constraints including
routing schemes not included in this paper.

Among the studies about the energy hole problem or the
uneven traffic distribution problem ([8], [11], [4], [7], [9],
[10]), [10] is the most similar to our work in its goal of
obtaining a balanced energy consumption rate everywhere by
non-uniform node deployment. In that work, the sensor field
is divided into several concentric rings around the sink. The
authors give a heuristic routing scheme that achieves an equal
energy dissipation rate in all rings except the outmost one,
provided the number of nodes increases geometrically from
the outmost ring inward. However, their models of routing, the
sensor field and energy consumption are significantly different
from ours, and consequently, the problems of determining
the node densities are quite different, with ours being more
general. Some of the important differences are:

1) In [10], the sensor nodes can send data only to the nodes



in the neighboring ring. In contrast, we model a wide
class of routing schemes. In each routing scheme, the
nodes can send data to different inner rings at different
probabilities.

2) In [10], the nodes generate data at the same constant
rate. We consider a family of data generate rates, which
are functions of the node densities.

3) Our energy consumption model is more general: The
required transmission power of a node is a function of
the transmission distance to the receiver.

The rest of the paper is organized as follows. In Section II,
we show how to compute the node densities required to equal-
ize the energy consumption rate. There, we consider general
energy consumption, traffic generation and routing models.
In Section III, we show how to compute the node densities
for several concrete and important cases. In Section IV, we
show experimental results to demonstrate the validity of our
modeling approach and analytical method. The conclusions
are given in Section V.

II. DECIDING NODE DENSITIES - GENERAL CASE

In this section, we show how to compute the node densities
required to equalize the energy consumption rates of all nodes
in the network. We consider a family of data generation
models, a family of routing schemes, and a general energy
consumption model. We give a complete solution for the case
of density-independent routing.

A. Sensor Network and Energy Consumption Models

The sensor field in the shape of a disk is shown in Figure 1
with the sink at the center. The disk is divided into concentric
rings having the same width. In each ring, the nodes are
uniformly spread out and the node density is a constant. We
only need to compute a finite number of node densities, one for
each ring. We consider the situation where the communication
capability of the nodes is limited so that multi-hop routing
is necessary to transfer data to the sink. The routing rule is
specified at the granularity of the rings.

Such ring-based model of the sensor network is typical (see
[81, [10]). It represents a simplification; but it can also be close
to reality for a number of practical cases, for instance, when
the network is explicitly constructed this way. For us, it mainly
serves to explore and illustrate the basic ideas of the method
and to make numerical experiments easier. The work on highly
general sensor network models is ongoing.

We introduce some definitions and notations.

o n: the total number of rings.

e Rj:ring j, 0 < j < n. We index the rings in the direction
away from the center of the disk. For convenience, R
refers to the center of the disk where the sink is. R; is
also special; it is a disk.

o w: the width of each ring, Ry,--- , R,. For Ry, w is its
radius.

e pj;: the node density of ring j, 1 < j < n.

e S;, Cj and Gj: the rates of the locally generated traffic,
of the relayed traffic, and of the total (outgoing) traffic,
respectively, of a typical node in ring j, 1 < j < mn.

e P;: the energy consumption rate of a typical node in ring
J1<j<n

Sensor field model

Fig. 1.

The energy consumption model of the sensor nodes affects
the final density of each ring. We adopt the energy consump-
tion model of [4]. The required transmission energy to send
one unit of data to a node at a distance d away from the
sender is given by FE;(d) = v + Bd®, where ~ is the required
energy to operate the transceiver circuitry, 8 is a parameter
determined by the environment, and « is the so-called path
loss exponent. Usually, o is between 2 to 6 depending on the
operating environment. To account for the situations where
the transmitters cannot vary the transmission power due to
technological constraints, we widen its range to between 0
and 6. Some amount of energy is also required to receive a
unit of data, and this amount is denoted by E,.(-) = ~. In this
model, the receiving energy requirement does not depend on
the distance from the transmitter.

The maximum transmission range of a sensor node is also
an important parameter. We assume the range is [ rings, 1 <
I < n. That is, a sensor node can transmit data up to [ rings
away without relaying. If the maximum range is equal to n,
then every sensor node is able to send data to the sink directly.
This is the assumption of [8], which is more restricted than
our case.

B. Traffic and Routing Models

We assume flow conservation at every sensor node: A node
cannot buffer an infinite amount of data, and, after the traffic
is generated, there is no further in-network processing that
may reduce or increase the traffic rate at the node. The data
transmission rate at a typical node in ring j, denoted by G,
can be expressed as

Gj = Sj + Cj, (D)

where S; is the rate of the locally generated traffic, and C; is
the rate of the traffic to be relayed by the node.

1) Rate of Locally Generated Traffic (S;): Let us assume
that a certain amount of data rate is needed to monitor a unit
of area and the rate is a constant value of K throughout the
sensor field. This is the inherent data rate needed for reporting
events or conditions about a unit of area. There are many
possibilities regarding how the inherent data rate affects the
actual traffic rate generated by each nearby sensor node and
we will consider several of them.



1) The system has local coordination among the nearby
sensors, which can reduce the amount of traffic gen-
erated. Specifically, for ring j, the rate of the locally
generated traffic at a typical node is S;(p;) = K/p;.

2) Another possibility is the complete lack of local coordi-
nation among the nodes and the nearby nodes all report
the same events to the sink. In this case, the rate of the
traffic generated by any node is S;(p;) = K.

3) The sensor nodes coordinate with each other to reduce
the generated traffic. But the coordination is not perfect
and there is still some amount of excess traffic. We
can model this situation in two ways. The first is to
set Sj(pj) = K/p§ for some constant a, 0 < a < 1.
The amount of data generated per unit area is K pgl_a),
which is more than K (we will see later that we always
have p; > 1 for all j). The constant a is chosen to match
the actual amount of generated traffic. The second way
is to set Sj(p;) = nK/p,; for some constant n > 1.
The amount of data generated per unit area is nK. This
represents a trivial extension to case 1) above and we
will not consider it further.

To summarize, the rate of locally generated traffic by a
typical node in ring j is

Sj(ps) = K/pf, 2)

where 0 < a < 1.

2) Routing: The rate of the relayed traffic at a node depends
on the routing scheme used by the network. We consider the
class of routing schemes that can be captured by the following
probabilistic description. For each pair of rings k and j, 0 <
7 <k, let

F(j) ={the probability that a node in ring k selects a node
in ring j as its next-hop neighbor for data delivery}.

Note that the description of the routing is at the granularity of
the rings. All nodes in the same ring have the same probability
distribution. Each particular matrix (F%(j)) describes a routing
scheme. The description is precise if a routing scheme operates
exactly according to the definition of Fj(j). We will later
consider several concrete examples. In more general cases,
the description by (Fi(j)) can be thought as a model for a
practical routing scheme and it approximately captures how
a node chooses its next-hop neighbor for data delivery in the
practical routing scheme. Many real routing schemes may be
modeled this way.

3) Rate of Relayed Traffic (C;): With the routing given
by (Fy(j)), we proceed to derive the relationship satisfied
by the relayed traffic. The total rate of traffic that all nodes
in ring k transmit directly to ring j, 1 < j < k, is
o (2k — 1)w2Gy F(5). Therefore, the average rate of the
traffic contributed by ring k to a typical node in ring j is

pkﬂ'(Qk - 1)w2Gka(]) _ pk(Qk - 1)Gka(_])
pi(2j —1)

For each j, 1 < j < n, the rate of the relayed traffic at a
typical node in ring j is the sum of the above quantity over

p;im(2) — 1)w?

all rings outside ring j that can reach ring j. That is,

min(n,j+1)

>

k=j+1

pr(2k — )G Fy(j)

C; = 3)

p;i(2j —1)
Note that, in min(n,j + 1), ring n is the outmost ring and [
is the maximum range.

Now we can get the total data transmission rate for a node
in ring j, 1 < j < n. By (1) and (3), we have

. S (2K — 1)GrFi())

G;=5;(p; - 4)
3= 5iles) 02— 1)
For the outmost ring n, since C,, = 0, we have

For now, we consider p,, as a given parameter. We will
discuss how to determine p,, later.

C. Power Consumption Rate of a Node

Consider the energy consumption rate of a typical node in
ring j, denoted by P;. P; depends on the energy consumption
model discussed in Section II-A. In the energy model, the
energy required to transmit a unit of data is a function of the
transmission distance. Continuing to pursue the possibilities
for simplification offered by the ring model, we make the
approximation that the distance between a pair of nodes is
proportional to the number of rings separating them. The
approximation will be quite accurate if the next-hop neighbor
that each node selects is on the line from the node to the
sink, or in the vicinity of the line. Any shortest-path routing
or minimum-energy routing algorithms, which are the most
popular algorithms, will favor such a neighbor. Hence, the
approximation is relevant to typical systems.

The power used for transmission by a node in ring j toward
ring ¢ is denoted by Pjt (7). This is the energy consumed per
unit of time to transfer the portion of the node’s data directed
to the nodes in ring i'. We have, for 1 < j <mand (j—1)4 <
i <7

PLG) = (v + B — 1)°w™) G,y (i).
The overall transmission power used by a node in ring j is
given by?

j—1
P! = Z Pl(i)

i=(j—1)+
j—1

=1Gj + BuwG; Y (G —1)*Fi(0). (6)
i=(j—=1)+

The power used for receiving data by a node in ring j is?,
Pj =10 =G5 = 75;(p))- 7

Here, the probability F}(4) is interpreted as the proportion of the data at
a fixed node in ring j that is transmitted to some nodes in ring ¢. Throughout,
we will use the two interpretations, probability or proportion, interchangeably
depending on the need.

ZFor a real number b, we define (b)4 = max(b,0).

3Note that since Cy, = 0, Pl =0.



Hence, the power consumption of a node in ring j is, for
1<j<n,

P; = Pj + P

J—1
=29G; + pw Gy Y (5 —0)*Fy(i) — vS;(ps). (8)
i=(j—1)+
D. Problem Formulation

We make the minor assumption that the sensors have identi-
cal initial energy endowment. Our objective is to choose node
densities (p;)1<i<n SO as to equalize the energy consumption
rate of all nodes, i.e., to have P; = P, forall 1 < j < n. If
this can be achieved, all the sensor nodes will have identical
lifetime. There is also a minimum density requirement, i.e.,
p; > O for all ¢, where © is a positive constant. In its
present form, the problem may have multiple solutions. If that
is the case, we take the one with the smallest total number of
Sensors, 22;1 piA; < A, where each constant A; is the area of
ring ¢. Putting it together, we have the following optimization
problem, called (EP).

(EP) > pidi ©)
i=1

subject to P; = P,, forall j=1,2,...,n—1 (10)

p; >0, forallj=1,2,...,n (11

The above problem is less general than a lifetime maxi-
mization problem, which is to maximize the shortest lifetime
of all sensor nodes subject to limit on the total number of
sensor nodes. However, in important special cases (e.g., when
S(pj) = K/pj), the two problems are equivalent in the
sense that the lifetime maximization problem has an optimal
solution in which all sensor nodes have identical lifetime
(equivalently, the nodes have identical energy consumption
rates). In the cases where the two problems are different,
finding simple solutions for the lifetime maximization problem
is more challenging. The effort to solve that problem on a very
general network model is ongoing. Meanwhile, the paper is
restricted to the problem of equalizing the energy consumption
rates.

With P; = P, G can be written as follows, for 1 < j < n,

P, +vS;(p;)
27+ fu iy, U

E. Case of Density-Independent Routing

(12)

G; = .
— 1) Fj(i)

In this case, the routing (Fj(j))x,; is independent of the
node densities (pg)r everywhere. By (5) and (8), P,, depends
only on p,. Since p, is considered a constant, P, is also a
constant. Then, from (12), G; can be viewed as a function of
pj. By re-arranging (4), we get

szr; It b2k — 1)Gr(pr) Fi(5)

p;i(Gj(p;)—S;(pj)) = 25 1

(13)

The left hand side of (13) depends on p;.
Hence, if we are given p; and Gy for &k > j + 1, we can
compute p; by solving a single variable equation. Once p;

is known, we can compute G;(p;) by (12). The additional
knowledge of p; and G,(p;) sets the stage to solve p;_; next.
The procedure repeats until p; is solved.

In the following, the details about how to solve p; are
explained for the three traffic generation models. Let

j—1
By £2y+ fuw Y (5 —i)"F(i) (19
i=(j—1)+
SR o)~ DGLEW()
B, & k=j+1 : (5)

27 —1
Since the routing is independent of the densities and it is given,
B, is a known value for the fixed j. Given p; and Gy for
k > j+ 1, By is also known. Then, from (12) and (13), we
have

piPn + (v = B1)p;S;i(p;)
= K/p;:

o BlBQ —K(’Y—Bl)

Pj = P, .

Note that v — B; < 0 and By > 0. Hence, positive solutions

for p;’s exist.

2) Sj(p;) =

we have P, = vK + pw*K Z (j — 9)*F;(3). Then,
=G0+
P, + K(v — By) = 0. Hence, the left hand side of (16) is
p;(Pn + K(v — By)) = 0. There is no solution to p;. This
means that it is impossible to have P; = P, for 1 < j < n.
The result is not surprising. The locally generated traffic rate is
K for every node in ring j. In general, each node also receives
and relays some traffic from the outer rings. The total traffic
rate from a node in ring j exceeds K. On the other hand,
the traffic rate from a node in ring n is K. There is no way
to equalize the energy consumption rates of the two nodes. In
this case, the lifetime maximization problem is a more suitable
formulation. We will not pursue that problem in this paper.
3) Sipj) = K/p}, (0 <a<1):

piPn+ (v —B1)Kp;~* (18)

In general, there is no closed form expression for the solution
of p;. But, this single-variable equation can be easily solved
numerically. Consider the left-hand side function g(p;) =
piPn + (v — Bl)Kp}*a. Note that g(0) = 0 and g(p;)
eventually increases to infinity. The derivative of the function
is ¢'(pj) = Po+ (v — B1))K(1 — a)p;*, which increases
from —oo to P, on the interval (0,00). Hence, on [0, 00),
g(pj) starts at 0, decreases, and then increases to infinity. Since
B1 By > 0, there is always a unique solution to the equation
g(pj) = B1Bs. One of the ways to find the solution is binary
search.

To summarize, under a given p, > 0, p; can be computed
iteratively from 5 = n — 1 down to j = 1. For the case of

= 1, the formula (17) can be used directly; for the case
0 < a < 1, one can solve (18) by binary search (or any
other general numerical procedure for solving a single-variable
equation). The algorithm outlined here is named Algo-A(p.,).

— B, Bs. (16)

1) Si(pj)

a7)

K: In this case, by (6) and the fact P] = 0,

= B, Bs.



Finally, for the case of a = 0, no solution exists; one
may want to reformulate the problem as a related lifetime
maximization problem as discussed in Section II-D.

F. Finding p,

The remaining step is to find p,, for the problem EP. This
relies the following lemma.

Lemma 1: For each k, 1 < k < n, pp and ppG) are
monotone non-decreasing functions of p,,.

Proof: First, note that G, (p,) = Sn(pn) = K/p& is
monotone non-increasing in p, for 0 < a < 1. Also, since
P, = P! and by (6), P, is monotone non-increasing in p,.
The total outgoing traffic rate per unit area in ring n is p, G, =
K ,o}f“, which is monotone non-decreasing in p,,. Since P,
is monotone non-increasing in p,, and P; = P,, P; must be
monotone non-increasing in p,.

We make the induction hypothesis that p; and piGj are

both monotone non-decreasing in p, for k = 5+ 1,...,n,
where 1 < j < n — 1. We will show the same are true for
p;iGj and p;.

The relayed traffic rate per unit area in ring j is p;C;. By

3.

min(n,j+1)

>

pr(2k — 1)GrFy.(5)

7= 1) "
Hence, under the induction hypothesis, p;C'; is monotone non-
decreasing in p,.

Now, suppose we increase p, to p,. Let the node densities
(for achieving equal energy consumption rates) corresponding
to p, be denoted by p;(p,) for 1 < j < n; let the node
densities corresponding to p!, be denoted by p;(pl,) for 1 <
j < n. We note that p,,(pn) = pn and py(pl,) = pl,.

Then, under the induction hypothesis, p;(p,)C;(pn) <
p;(pl,)Cj(ph,)- That is, under the new solution (p;(p},))1<j<n,
the relayed traffic rate per unit area in ring j is greater than
or equal to what it is under (p;(pn))1<j<n. We also know
that P;(pl,) = Pn(p),) < Pn(pn) = Pj(pn). This implies that
P = p;-If pj < p; were true, then under (p;(p;,))1<j<n, €ach
node in ring j would have to receive and relay more traffic
per unit time, and the locally generated traffic rate //p;(p},)*
would also be higher, and hence, the energy consumption rate
per node would be higher, ie., P;j(p],) > P;(pn), which is
a contradiction. We conclude that p;(p,) is monotone non-
decreasing in p,.

Next, by (4) and (2),

zir;ﬁjﬂ) pre(2k — 1)G1LFx(j)
(2j —1) |

Hence, p;G; is monotone non-decreasing in p,, as well. H
Hence, p,, can be found by binary search until the minimum

node density condition (11) is satisfied. We next summarize

the details of the entire algorithm.

Summary of Algorithm:

piGi=Kp;™" +

1) Initialize p,, to be some positive value v > 0 such that
the problem EP is feasible.

This is done as follows: Repeatedly double p,,; for each
Pn» solve the corresponding p; for 1 < j < n —1 using
Algo-A(p,,) until the problem EP is feasible.

2) Perform binary search on [0, u] for the smallest value
pn such that condition (11) is satisfied.
In each step of the binary search, use Algo-A(p,) to
solve the corresponding p; for 1 < j < n — 1; check
whether condition (11) is satisfied; increase or decrease
pn accordingly.

By Lemma 1, the solution of the above algorithm minimizes
the total number of sensor nodes in the network, which is
the objective of the problem EP, and equalizes the energy
consumption rates. The overall algorithm is very simple since
it consists of one-level (for a = 1) or two-level (for 0 < a < 1)
binary search.

G. Case of Density-Dependent Routing

When the routing (F}(j)) depends on the node densities, the
problem of finding the node densities becomes much harder.
We will illustrate a heuristic method in Section III-A2 under
a more concrete setting.

III. IMPORTANT SPECIAL CASES

We now consider several important special cases in which
the expressions for the node densities become simpler and
more explicit. Our experiments are done on these special cases.
In the following, we assume the locally generated traffic rate
is S;j(p;) = K/p; for each ring j. Furthermore, we assume
the energy expenditure is dominated by transmissions, which
is so when the transmission distances are reasonably large, and
hence, we can set v = 0.

A. Under Generic Routing

From (4), we can write, for all 1 < j < n,

min(n,j+1)

>

k=j+1

K
—+

_ (2k — 1)GrFr(5)
pPj = Gj

(2 —1)G;

pr- (20)

The energy consumption rate for a node in ring j, 1 < j <
n, 18

i1
Py =w®Gy Y (=) F(i).

i=(j—1)+

2n

By setting P; = P, for each j, 1 < j < n, we get the
following relationship:

n—1

> ) EG)
G = i=(n—1)4

Y G- FG6)

=1+

Gp.

(22)

Note that G,, = K/p,,, which depends only on p,.



1) Case of Density-Independent Routing: Hence, if Fj(j)
has no dependency on any node density, then under a given
Pn» one can compute G; using (22) for all j. After that, one
can compute the densities p; iteratively using (20) for all j
from n — 1 down to 1.

The above assumes a fixed p,,. We then have to decide on
pn- In this special case, it turns out there is no need to do
binary search for p,,. First, note that

j—1
> G —9)*F)
Gr _ i=G-1)
G, k—1
> (k-
i=(k—1)4
Then, (20) can be re-written as:

i—1 N s
Zg:(jfl)Jr (J — )" Fj(i)
Z?}i y, (n— i) Fy (i)
min(n,j+1) ZZ G (] .

PIRES
Zi:(lk—m (k-

k=j+1

i) Fy (i)

Pj =Pn

(23)

It can be observed that if (p )"_11 is a solution to (23)
given py, then (rp;)7 ! is a solution to (23) given £p,,. One
can decide the node densmes as follows: Choose an arbitrary
positive value for p,; compute all p; for 1 < j < n; find
the minimum constant s such that xkp; > © for all j; use
(kpj)j—y as the node densities for deployment.

2) Case of Density-Dependent Routing: The situation be-
comes more complicated if the routing (Fy(j)) depends on
the node densities. Expression (23) still holds. But, it does not
imply that, if p,, is given, then one can compute the densities
p; for all other j, because each Fj(j) may depend on the
densities in complicated ways. The set of equations in (23), for
1 <3 < n, is a fairly complex system of nonlinear equations
with p; as the variables, and it is not clear how the equations
can be solved.

However, (23) does suggest a different kind of iterative
method to compute each p;, which will be called successive
substitution. Suppose, we initialize the iteration at some con-
stant p§0) for all 1 < j < n. This gives F’ ,50)( j), for different

k and j. Then, one can substitute pgo) and Féo)(j) into the

right hand side of (23) and derive pjl) forall 1 < j <n. In
a general iteration step t, the following iteration occurs, for
1<j5<n.

S G oD ()

27_(; - (n— Z)O‘F(t)(z)

D S, G =)D 6) 2k - 1)
2 Sy, (k=i F () (24 -1

k=j+1
x FD(j )pﬁf% 24)

(t+1) _
j - Mn

)
)

where, for a fixed ¢, ( ( /) is computed using (pg-t)). The
)

(t

process can continue until p; converges, for 1 < j <n. We

take the values in the limit as the solutions of the equations in
(23). Although we have not been able to prove convergence
due to technical difficulties, we will show by experiments
(Section IV) that successive substitution indeed works for all
the test cases.

For the case of density-dependent routing, in general, it can
be difficult to decide the final p,,. We consider the special
case where (Fy(j)) is independent of the scaling of the node
densities. That is, F}(j) remains unchanged for all & and j
when p; is scaled by a constant factor k > 0 for all 3, 1 <1¢ <
n. As a result, if (p;)7- ~[ is a solution to (23) given p,,, then
(kpj)i=1 ! is a solution to (23) given £p,,. The method to decide
the ﬁnal node densities is the same as the case of density-
independent routing; i.e., we choose an arbitrary positive value
for p,,, compute all p; for 1 < j < n, and find the minimum
constant x such that kp; > © for all j.

If (F}(j)) is dependent of the scaling of the node densities,
then, an ad-hoc method is to try different values of p, and
conduct the successive substitution procedure for each p,, until
a satisfactory set of p; is found.

B. Several Routing Schemes

Expression (23) is for a generic routing (F(j)). For any
routing scheme used in practice, if one can cast it into a
specification in terms of (Fy(j)), then one can use (5), (22)
and (20) (or, equivalently, (23)) to compute the required node
densities, as outlined in Section III-A. Next, we will consider
some simple routing schemes as examples and later show
numerical results about them. Many more routing schemes
can be considered similarly.

1) Uniform Ring Selection: With this scheme, a node
finds its next-hop node in the direction to the sink via two
steps. First, the node selects a reachable ring with a uniform
probability distribution. Second, the sending node randomly
chooses the next-hop node among the nodes in the intersection
of the selected ring and the sender’s communication range. The
probability that ring i, (j — )+ < ¢ < j, is selected as the
next-hop ring by a node in ring j is

F;(i) = 1/min(l, 7).

Note that, in this case, Fj(¢) is independent on the node
densities.

From (23), the node densities can be computed iteratively
from n — 1 to 1 by the following expression.

min(n,[) Eg‘;(ljfz” (=)
min(j, 1) 050 ), (n— i)

min(ﬁ:jﬂ) i, p, U=D%@2k-1) 1 )
— B B - k-
Sy, (k=) (27 = 1) min(j,1)

k=j+1

2) Uniform Node Selection: In this routing scheme, a node
X can select any node with the same probability as long as
the target node resides in X’s communication range and is
closer to the sink than X is. This scheme is motivated by
geographical routing.

Figure 2 illustrates the underlying geometry for Uniform
Node Selection. Node X can choose any node in the shaded

Pj =Pn




Rj

Fig. 2.  Uniform Node Selection

part as the next-hop node. Denote by () the region within
the communication range of node X. The shaded region is
the intersection of () and the inner rings that X can reach,
ie, Ui;b_l)Jr(Rk N Q). The number of nodes in Ry N Q is
prA(Rr N Q), where the notation A(U) represents the area of
a region U. The number of possible next-hop nodes for node
X is Z'}C;bilu prA(Rr N Q). Hence, the probability Fj (i)
is, for (j — 1)+ <i<j,

iA(R;
Fy(i) = —2 A0 @s)
> rARLNQ)
k=(G-0)+

From basic knowledge of geometry, we can find the area of
the intersection of two disks [12]. If the distance between the
centers of two disks of radii » and R, respectively, is d, the
area of the intersection is given by

0(r, R, d)
d2 412 — R2 d2+R2—7'2)
2dr 2dR
1
f5\/(7d+r+R)(d+rfR)(dfr+R)(d+r+R).

2

= r%cos ! ( )+ R%cos™!(

Now, we can find the area of R;N(). Let d be the distance of
node X from the sink and note that [w is the communication
range of node X in units of distance. The area of Ry N @, for
(j =)+ < k < 4, is obtained by,

AR, N Q) = 0(lw, kw,d) — 0(lw, (k — )w,d).  (26)
The area of R(;_;, NQ is given by

The probability F}; (i) can be obtained by plugging expressions
(26) and (27) into (25). By applying the expressions for
F;(i) to (23), we derive a set of equations in p; only, for
different j. From (25), note that F;(i) depends on various
pi. In our experiment, we solved the equations by successive
substitution, which is to iterate (pE-t)) over t as in (24).

IV. EXPERIMENTAL RESULTS

In this section, we use simulation and numerical experi-
ments to verify whether our method for computing the node
densities works. The radius of the sensor field is 50 (units)

and the total number of rings is 20. The procedure of the
experiments is as follows. First, for a given routing scheme
and experimental parameters, we calculate the node densities
of the rings using the equations and method introduced in
Sections II and III. Then, in our simulation setup, we randomly
deploy the sensor nodes into the sensor field according to the
calculated densities and have each node select its next-hop
neighbor according to the given routing scheme. The density
of the outmost ring p,, can be tuned to control the total number
of nodes in the sensor field. In the simulation run, we measure
the energy consumption rate of each node. Finally, we compute
the average per-node energy consumption rate for each ring.
The goal is to verify whether the calculated densities result in
an even energy consumption rate in all rings.

A. Uniform Ring Selection

The results for various maximum ranges ! are shown in
Figure 3, where the path loss exponent, «, is 2. We have
conducted extensive experiments for other values of a. The
results for the case of &« = 2 are representative and, for
brevity, we omit the results for other values of a. In Figure
3, we show both the average per-node energy consumption
rate and the calculated node density in each of the rings.
Several observations can be made. First, the average per-node
energy consumption rates of the rings are nearly identical.
This demonstrates that our modeling approach and analytical
method are highly accurate, and that correct node densities
can be derived from the resulting mathematical expressions
or methods. Second, the shape of the density function, as a
function of the ring index, is somewhat surprising in some
cases. The functions are not even monotonic in the case of
Il =10 or [ = 20.

In the cases of [ = 1 or [ = 2, the density function
is monotonic and increases very fast as the ring gets closer
to the sink. It is easy to explain the case of [ = 1. Since
the maximum range is 1, all the traffic of a node must flow
through the adjacent ring on the inside. Therefore, the traffic
load becomes heavier as the ring gets closer to the sink. It
is necessary to deploy more nodes in the rings closer to the
sink so as to balance the energy consumption rates across the
rings. As it approaches the sink, the area of the ring decreases
while the number of nodes in the ring increases. Hence, the
density increases fast.

For larger values of [, e.g., [ = 10, it is not necessarily
true that higher node densities are required for rings closer to
the sink. This is more due to the “boundary effect”. In such
a case, each node can directly transmit its traffic to multiple
inside rings. However, longer transmission distance requires
more energy. A node in one of the [ inner-most rings (R;,
1 <4 <) has fewer than [ rings left on the inside. Hence, its
maximum transmission distance is actually less than [ rings
away. As a result, it tends to consume less energy on average
than a node in a ring further outside, say R; for j > [. The
precise situation is complicated, depending on the parameters
of the energy consumption model and the routing probabilities.

B. Uniform Node Selection

Unlike the case of Uniform Ring Selection, here, the node
densities are computed by successive substitution as in (24).
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Fig. 3. Node densities and average per-node energy consumption rates for
various maximum ranges, /, under Uniform Ring Selection. a = 2.

The results for o = 2 are shown in Figure 4. In all plots,
the curve for the average per-node energy consumption rate
is flat. This means that, if we deploy the nodes according
to the computed densities, we can achieve an even energy
consumption rate in all rings. The results indicate that our
modeling approach, analytical method and numerical solutions
are all sound. Note that the curves for the node densities can be
quite oscillatory or irregular. Hence, it is quite hard to predict
the deployment densities using ad hoc approaches. Our method
for precise computation can be valuable.
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Fig. 4. Node densities and average per-node energy consumption rates for
various maximum ranges, [, under Uniform Node Selection. o = 2.

V. CONCLUSIONS

In this paper, we examine how to apply non-uniform deploy-
ment of the sensor nodes to resolve the problem of uneven
energy consumption rates by the nodes, or the energy hole
problem, in multi-hop wireless sensor networks. More gener-
ally, non-uniform deployment with careful density control can

be an important technique for achieving a desirable lifetime
and system-cost tradeoff for a sensor network. Our main
contribution is to present a method for computing the required
node density function. As an example, we show that the
method enables us to compute the correct densities that achieve
an equal energy consumption rate for all nodes, thereby,
extending the network lifetime. The method is expected to
be applicable to other similar objectives.

We next discuss some limitations of the paper. The an-
alytical approach is essentially of a mean-value type and
it is expected to be accurate for networks with a large
number of densely deployed sensors. One limitation is that
it ignores statistical fluctuations, which may be an important
factor of consideration for low-density networks. Nevertheless,
our experimental results have shown the effectiveness of the
approach for networks of moderate density. For tractability, the
method requires a model of the underlying routing protocol
in the form of the probabilistic model given in the paper.
The probabilistic model is meant to be flexible enough for
capturing the essence of many practical routing protocols.
However, it may be not powerful enough to capture sufficient
details of some routing protocols. Some other issues are also
overlooked in this paper, such as the algorithms and protocols
for determining which nodes become active or inactive in each
region. These issues are either orthogonal to this work or left
for future studies. Finally, the ring-type network model is a
limitation and our ongoing work is addressing that.
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