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Abstract To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated

and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms

that govern these processes are incompletely understood. Here, we show that Apelin signaling

functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit

defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we

find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while

neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling

enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting

transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human

ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown

zebrafish embryos. These data provide new insights into fundamental principles of blood vessel

formation and Apelin signaling, enabling a better understanding of vascular growth in health and

disease.

Introduction
Endothelial cell sprouting is a fundamental process of physiological and pathological blood vessel

growth. Attracted by growth factors such as vascular endothelial growth factor-A (VEGF-A) secreted

from hypoxic tissues, endothelial cells (ECs) break out of the quiescent vessel wall to form new vessel

branches (Ferrara et al., 2003; Koch and Claesson-Welsh, 2012). ECs with higher levels of VEGF-A

signaling become invasive tip cells that lead new vascular sprouts, while neighboring ECs with lower

VEGF-A signaling become trailing stalk cells (Gerhardt et al., 2003). This process is coordinated by

Delta-like 4 (DLL4)/Notch signaling. Activation of Notch receptors by their ligand DLL4, expressed

by tip cells, represses tip cell behavior in stalk cells (Hellström et al., 2007; Leslie et al., 2007;

Siekmann and Lawson, 2007; Suchting et al., 2007). Loss of Notch signaling, on the other hand,

causes excessive tip cell formation and vascular overgrowth (Hellström et al., 2007; Leslie et al.,

2007; Siekmann and Lawson, 2007; Suchting et al., 2007).

Apelin (Apln) is a small secreted peptide, which was initially identified because of its inotropic

activity (Szokodi et al., 2002). Apelin was subsequently described as a tip cell-enriched gene
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(del Toro et al., 2010). Apelin (Tatemoto et al., 1998), as well as the newly identified ligand Apela

(Chng et al., 2013; Pauli et al., 2014), can both activate the Apelin receptor (Aplnr), a 7-transmem-

brane G-protein-coupled receptor (GPCR). Mouse and frog embryos lacking Apln or Aplnr function

exhibit reduced vascular outgrowth, decreased EC proliferation, smaller vessel diameter as well as

defects in the alignment of arteries and veins (Cox et al., 2006; Kälin et al., 2007; Kidoya et al.,

2008; del Toro et al., 2010; Kidoya et al., 2010; Kidoya et al., 2015; Papangeli et al., 2016). In

addition, Apelin signaling has been implicated in several cardiovascular diseases including pulmo-

nary hypertension (Goetze et al., 2006; Alastalo et al., 2011; Chandra et al., 2011), atherosclerosis

(Hashimoto et al., 2007; Chun et al., 2008; Kojima et al., 2010; Pitkin et al., 2010), myocardial

infarction (Tempel et al., 2012; Wang et al., 2013; Zhang et al., 2016; Chen et al., 2017), and

tumor angiogenesis (Kidoya et al., 2012; Zhao et al., 2018; Uribesalgo et al., 2019). However, the

cellular mechanisms by which Apelin signaling functions within the vasculature remain elusive. Using

zebrafish mutants combined with mosaic analyses, high-resolution time-lapse imaging, and meta-

bolic studies, we find that Apelin signaling is required to boost endothelial metabolic activity during

angiogenic sprouting. Furthermore, we show that Apelin signaling acts downstream of Notch signal-

ing, where it is required for Notch-controlled angiogenesis.

Results

Apelin signaling is required for angiogenic sprouting
To examine the expression pattern of the apelin ligand and receptor genes during angiogenic

sprouting in zebrafish embryos, we first performed whole-mount in situ hybridization during inter-

segmental vessel (ISV) formation. We detected clear alpn, but no apela, expression within the

sprouting ISVs (Figure 1—figure supplement 1 arrowheads). For the receptor genes, we could only

detect aplnrb expression in the ISVs (Figure 1—figure supplement 1 arrowheads).

To visualize apln and aplnrb expression at single cell resolution, we developed reporters using

Bacterial artificial chromosome (BAC) recombineering (Figure 1—figure supplement 2). To this end,

we replaced the ATG of an apln containing BAC with an EGFP cassette. Similarly, we replaced the

stop codon of an aplnrb containing BAC with a tandem fluorescent timer (TagRFP-sfGFP) cassette

leading to a fusion protein. We injected both modified BACs into one-cell stage zebrafish embryos

to generate stable transgenic lines, Tg(apln:EGFP) and Tg(aplnrb:aplnrb-TagRFP-sfGFP) (hereafter

referred to Tg(aplnrb:aplnrb-sfGFP)) (Figure 1—figure supplement 2). We first detected weak apln:

EGFP expression in sprouting ISVs at 30 hpf (Figure 1A). At 54 hpf, all ECs within the dorsal longitu-

dinal anastomotic vessel (DLAV) – a vessel formed by tip cells – were labeled (Figure 1A, arrow-

heads) while some stalk cells also exhibited weak apln:GFP expression (Figure 1A, arrows). Of note,

aplnrb:Aplrnb-sfGFP expression at 26 hpf was visible in the entire ISV sprout (Figure 1B arrow-

heads), but it was absent from non-angiogenic ECs within the dorsal aorta (DA). At 54 hpf, aplnrb:

Aplrnb-sfGFP expression was detected in all ECs that had sprouted out of the DA but also weakly in

ECs within the DA (Figure 1B). These results suggest that apln is expressed in tip cells while aplnrb

is expressed in all sprouting ECs.

To examine the function of Apelin signaling during sprouting angiogenesis in zebrafish, we used

mutants for aplnra (Helker et al., 2015), aplnrb (Helker et al., 2015), apln (Helker et al., 2015) and

apela (Chng et al., 2013). Homozygous aplnra mutant embryos exhibited no obvious defects during

ISV formation (Figure 1—figure supplement 3). However, homozygous aplnrb mutant embryos

exhibited reduced ISV length and failed to form the DLAV (Figure 1—figure supplement 3). This

phenotype was more severe in embryos lacking both aplnra and aplnrb (Figure 1C, Figure 1—fig-

ure supplement 3), indicating partial compensation. We also analyzed apln and apela mutants.

Homozygous apela mutant embryos displayed only a mild delay in ISV outgrowth (Figure 1—figure

supplement 3), while homozygous apln mutant embryos exhibited defects in ISV outgrowth and fail-

ure to form the DLAV (Figure 1—figure supplement 3). Loss of both ligands increased the severity

of the phenotype leading to ISV stalling at the horizontal myoseptum (Figure 1C, Figure 1—figure

supplement 3). Consistent with studies in the mouse retina (del Toro et al., 2010), our studies iden-

tify apln expression as a marker of endothelial tip cells in zebrafish and show that Apelin signaling is

required for angiogenic sprouting.
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Apelin signaling regulates tip cell morphology
To investigate when the sprouting defects in Apelin signaling-deficient embryos first appear, we ana-

lyzed developmental time points when tip cells start to sprout out of the DA. However, no differen-

ces in sprout initiation or tip cell specification were observed in double homozygous receptor or

ligand mutants (Figure 2—figure supplement 1, Figure 2A). Instead, we found that sprout
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Figure 1. Apelin signaling promotes endothelial sprouting. Visualization of apelin and apelin receptor b expression using transgenic reporter lines.

Confocal projection images of the trunk region of zebrafish embryos. (A) TgBAC(apln:EGFP) expression is detectable in growing ISVs at 30 and 54 hpf.

Arrowheads point to strong apln expression in tip cells, while arrows point to weak apln expression in stalk cells. (B) TgBAC(aplnrb:aplnrb-EGFP)

expression is detectable in sprouting ECs (arrowheads) at 26 hpf and is clearly present in the ISVs and DLAV at 54 hpf. (C) Inactivation of Apelin ligand

and receptor genes impairs angiogenesis. Confocal projection images of the blood vasculature in the trunk region of Tg(fli1a:EGFP) embryos. apln -/-;

apela -/- as well as aplnra -/-; aplnrb -/- embryos exhibit a reduction in vascular sprouting at 28 and 54 hpf. Arrowheads point to stalled ISVs. Scale bars:

A’, 10 mm; A’’, B’, C’, C’’, 20 mm; B’’, 15 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Expression of apelin ligand and receptor genes by in situ hybridization.

Figure supplement 2. Generation of the TgBAC(apln:EGFP) and Tg(aplnrb:aplnrb-TagRFP-sfGFP) reporter lines.

Figure supplement 3. Quantification of angiogenic defects.
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Figure 2. Apelin signaling regulates endothelial filopodia formation and endothelial cell numbers. (A) Still images from confocal time-lapse movies of

vascular development in wild-type and aplnra +/-; aplnrb -/- embryos. During sprouting, wild-type tip cells send out filopodia (arrowheads). aplnra +/-;

aplnrb -/- embryos exhibit smaller sprouts and fail to form filopodia. (B) Confocal images of the blood vasculature in 24 hpf Tg(kdrl:HsHRAS-EGFP)

embryos injected with Ctr MO and aplnrb MO. aplnrb morphant embryos exhibit smaller sprouts and fail to form filopodia (arrowheads). (C) aplnrb

Figure 2 continued on next page
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elongation was slower in these mutant embryos, resulting in an overall reduction of sprout length

(Figure 2A, Figure 2—video 1, Figure 2—video 2). Furthermore, while endothelial tip cells in wild-

type embryos formed long filopodia which extended toward the dorsal side of the animal

(Figure 2A I, II, Figure 2—video 1), aplnr mutant embryos (aplnra+/-; aplnrb -/- and aplnra -/-;

aplnrb -/-) as well as aplnrb morpholino (MO) injected embryos (morphants) displayed a blunted tip

cell morphology (Figure 2A III, 2A IV, 2B, C, Figure 2—video 2), a phenotype which did not recover

over time.

Previously, we reported a role for Apelin signaling in establishing blood flow-induced EC polarity

(Kwon et al., 2016). To determine whether the observed defects during sprouting were caused by

defects in EC polarity, we analyzed the location of the Golgi apparatus during ISV formation in wild-

type and mutant embryos. However, we could not detect obvious differences in EC polarity during

angiogenic sprouting (Figure 2—figure supplement 2, arrowheads point to polarized ECs). Next,

we asked whether Apelin signaling regulates the number of ECs, and so combined aplnr mutants

with the Tg(fli1a:nEGFP) reporter line (Roman et al., 2002) to visualize EC nuclei. Compared to con-

trols, aplnr mutants exhibited a reduction in ISV EC numbers of 1 cell at 30 hpf (4 instead of 5) and 2

cells at 52 hpf (5 instead of 7) (Figure 2D,E). We next assessed whether apln overexpression leads

to ectopic sprouting. To this end, we generated an inducible transgenic line to overexpress apln

under the control of the hsp70l promoter. However, global overexpression of apln did not lead to

ectopic sprouting of blood vessels but led to mispatterned lymphatic vessels (Figure 2—figure sup-

plement 3, arrows). Altogether, these data indicate that the angiogenic defects in Apelin signaling-

deficient embryos are caused by filopodia defects and impaired cell migration. Apelin signaling also

regulates the number of ECs within the ISV sprouts.

Apelin signaling drives the sprouting behavior of ECs
We hypothesized that aplnrb expression (Figure 1B) provides an advantage for ECs to sprout. To

test this hypothesis, we generated chimeric embryos using wild-type and aplnr deficient embryos

(Figure 3A). Upon transplantation of wild-type donor cells into wild-type hosts, 34,5% of the donor-

derived ECs were present in the ISVs at 24 hpf (Figure 3B,C). In contrast, upon transplantation of

wild-type donor cells into aplnr-deficient hosts, 80% of the donor-derived ECs were present in the

ISVs at 24 hpf (Figure 3B,C). Together these data show that the apelin receptors function cell-auton-

omously in endothelial sprouting. The Apelin receptor has been shown to signal mainly through the

G-protein Gai (Habata et al., 1999). Therefore, we blocked Gai function through the mosaic and

vascular-specific overexpression of pertussis toxin (PTX). Our results show that ECs deficient for sig-

naling though Gai behave similarly to aplnr mutant ECs indicating that the Apelin receptor mediates

its angiogenic effect through Gai (Figure 3—figure supplement 1). Notably, wild-type donor-

derived ECs in aplnr deficient embryos populated the entire dorsal part of the vasculature which is

usually missing in these mutants, further confirming the cell-autonomous function of the Apelin

receptors during angiogenesis (Figure 3—figure supplement 2). Together, these results indicate

that apelin signaling primes ECs toward a sprouting state.

Figure 2 continued

morphant embryos exhibit a reduction in the number of endothelial filopodia (Ctr MO, n = 10; aplnrb MO, n = 15). (D) Confocal images of the blood

vasculature of 30 and 52 hpf Tg(fli1a:nEGFP) wild-type and aplnra +/-; aplnrb -/- embryos showing EC cell nuclei. (E) aplnra +/-; aplnrb -/- embryos exhibit

reduced EC numbers in the ISVs (30 hpf: aplnr +/+, n = 3; aplnr +/-, n = 10; aplnr -/-, n = 8; 52 hpf: aplnr +/+, n = 5; aplnr +/-, n = 10; aplnr -/-, n = 9).

n.s. not significant (two-tailed t-test). Scale bars: A, D, 20 mm; B, 40 mm; B, inset 10 mm.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. No obvious defects during initiation of EC sprouting in Apelin signaling-deficient embryos.

Figure supplement 2. No obvious defects in EC polarity in Apelin deficient embryos.

Figure supplement 3. Overexpression of apln does not cause ectopic EC sprouting.

Figure 2—video 1. Confocal time-lapse-imaging of a Tg(fli1a:EGFP) wild-type embryo from 23 to 32 hpf.

https://elifesciences.org/articles/55589#fig2video1

Figure 2—video 2. Confocal time-lapse-imaging of a Tg(fli1a:EGFP) aplnra +/-; aplnrb -/- embryos from 23 to 35 hpf.

https://elifesciences.org/articles/55589#fig2video2
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Apelin signaling functions downstream of Notch signaling
It has been previously reported that Notch-deficient ECs outcompete wild-type ECs during ISV

sprouting (Siekmann and Lawson, 2007), an observation consistent with data in mouse

(Jakobsson et al., 2010; Pitulescu et al., 2017). Since wild-type ECs similarly outcompete aplnr

mutant ECs, we wanted to investigate potential links between Apelin and Notch signaling. Hence,

we first blocked Notch signaling in TgBAC(apln:EGFP) embryos by injecting a dll4 MO. As previously

reported (Leslie et al., 2007; Siekmann and Lawson, 2007), dll4 morphants exhibited a hyper-

sprouting ISV phenotype (Figure 4A). Notably, we also observed a clear increase in apln:EGFP

expression in the ectopic sprouts (Figure 4A). To test whether Apelin signaling is required as a

downstream effector of Notch signaling during angiogenesis, we injected the dll4 MO into the off-

spring of apln and aplnrb heterozygous parents and compared the phenotype in homozygous

mutant embryos versus their wild-type siblings. Strikingly, the hypersprouting phenotype of dll4 mor-

phants was not present when Apln or Aplnrb function was lost (Figure 4B, Figure 4—figure supple-

ment 1). To examine whether other hypersprouting phenotypes require Apelin signaling, we

analyzed aplnrb, plexinD1 (plxnd1) double mutant embryos (Figure 4C,E). aplnrb mutant embryos

exhibit reduced sprouting and plxnd1 mutant embryos exhibit ectopic sprouting in line with pub-

lished data (Torres-Vázquez et al., 2004; Figure 4C,E). Loss of aplnrb function in the background

of the plxnd1 mutant did not alter its hypersprouting phenotype (Figure 4C,E), suggesting that it is
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Figure 3. Apelin signaling promotes the sprouting behavior of ECs. (A) Experimental design: At the blastula stage, cells from Tg(kdrl:HsHRAS-mCherry)

embryos were transplanted into host embryos obtained from Tg(fli1a:EGFP) aplnra +/-; aplnrb +/- incrosses. At 24 hpf, the mosaic embryos were imaged

and the donor-derived ECs scored for their position. (B, C) 34,5% of wild-type donor-derived ECs in wild-type hosts were found within the ISVs. 80% of

wild-type donor-derived ECs in aplnra +/-; aplnrb -/- hosts were found within the ISVs. Notably, wild-type ECs transplanted into aplnr- deficient embryos

completely substituted for the lack of cells in the dorsal part of the vasculature at 54 hpf (Figure 3—figure supplement 2). Scale bars: B, 20 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Overexpression of PTX phenocopies loss of Apelin signaling.

Figure supplement 2. Apelin signaling functions cell-autonomously in ECs.
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Figure 4. Apelin signaling functions downstream of Notch signaling in endothelial cells. (A - D) Confocal projection images of the blood vasculature in

the trunk region of Tg(flt1:tdTomato) (A) and Tg(fli1a:EGFP) (B–D) animals at 54 (B–D) and 72 (A) hpf. (A) Injection of a dll4 morpholino leads to an

increase in TgBAC(apln:EGFP) expression. (B) Loss of Apelin function can block excessive endothelial sprouting in dll4 morphants. (C, E) Angiogenic

response in aplnrb -/-, plxnd1 -/-, and aplnrb -/-; plxnd1 -/- embryos (arrowheads) (n = 95). (D, F) Angiogenic response to bmp2b overexpression in aplnr

Figure 4 continued on next page
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independent of Apelin function. Similar results were obtained when we analyzed ectopic venous

sprouting in response to bmp2b overexpression (Wiley et al., 2011; Figure 4D,F). Together these

data indicate that Apelin signaling is specifically required for Notch-modulated angiogenesis. To

investigate whether apln expression is itself regulated by Notch signaling, we performed cell culture

assays. We treated HUVECs with the Notch inhibitor DAPT and analyzed APLN expression by RT-

qPCR. Consistent with the observations in zebrafish (Figure 4A), we observed an increase in APLN

expression upon Notch inhibition (Figure 4G, Figure 4—source data 1). Next, we activated Notch

signaling by stimulating HUVECs with the Notch ligand DLL4. Conversely to the Notch inhibition

data, activating Notch signaling in HUVECs suppressed APLN expression (Figure 4H, Figure 4—

source data 1). Together these data suggest that the increased sprouting in response to Notch inhi-

bition is, in part, driven by the upregulation of apln.

Apelin signaling positively regulates EC metabolism
Because EC sprouting requires an increase in metabolic activity (Dobrina and Rossi, 1983;

Krützfeldt et al., 1990; Mertens et al., 1990; De Bock et al., 2013a; Vandekeere et al., 2015)

and Apelin signaling has been shown to control cell metabolism in other contexts (Dray et al., 2008;

Sawane et al., 2013), we asked whether Apelin signaling promotes EC metabolism. Previous studies

have demonstrated that ECs rely on glycolysis for sprouting (De Bock et al., 2013a;

Vandekeere et al., 2015). Therefore, we measured the extracellular acidification rate (ECAR) as a

surrogate parameter of glycolysis in Apelin signaling-deficient HUVECs (Figure 5A,B). Notably, we

observed a marked reduction in glycolysis after knockdown of Apelin signaling (Figure 5A), whereas

mitochondrial oxygen consumption appeared unchanged (Figure 5B). To gain insight into the

underlying mechanisms, we analyzed key regulators of metabolism and found a reduction in c-MYC

protein levels after depletion of Apelin signaling (Figure 5C). Furthermore, expression of PFKFB3,

which encodes an enzyme that sustains high glycolytic rates, was also reduced in Apelin signaling-

deficient HUVECs (Figure 5D). In order to analyze whether a reduction in EC metabolic activity

causes the vascular phenotype observed in aplnrb mutants, we performed mosaic rescue experi-

ments and overexpressed pfkfb3 in ECs. In agreement with our in vitro data, we found that overex-

pression of pfkfb3 in endothelial tip cells leads to a partial rescue of the vascular phenotype in

aplnrb mutants (Figure 5E arrowheads, 5F, Figure 4—source data 1). Thus, Apelin signaling con-

trols the expression of regulators of glucose metabolism as well as glycolytic activity in developing

endothelial cells.

Discussion
During the formation of the first embryonic blood vessels, angioblasts migrate to the midline where

they coalesce to form the future DA and cardinal vein. We have previously reported that vasculogen-

esis relies on the function of the ligand Apela (Helker et al., 2015). Here, we show that angiogenesis

depends mostly on the function of the ligand Apln. However, Apela can partially compensate for the

loss of Apln. This stage-specific ligand usage is in agreement with previous studies showing that

apela expression is reduced by the end of vasculogenesis when apln starts to be expressed

(Chng et al., 2013; Pauli et al., 2014).

During angiogenesis in embryos lacking Apelin signaling, we observed a severe sprouting defect

with a reduction in EC numbers and filopodia. As ECs proliferate, extend filopodia, and migrate dur-

ing ISV formation, it is challenging to assign the cause of the sprouting defect to the EC proliferation

or filopodia formation defects. However, Phng et al., 2013 reported that the inhibition of filopodia

Figure 4 continued

+/- and aplnr -/- embryos (arrowheads). (E) Genotype of embryos for aplnrb after sorting them according to phenotype. (G) RT-qPCR analysis of APELIN

mRNA levels in HUVECs treated with DAPT for 24 hr. Blocking Notch signaling with DAPT induces APELIN expression. (H) RT-qPCR analysis of APELIN

mRNA levels in HUVECs cultured on DLL4 to activate Notch signaling. Activating Notch signaling represses APELIN expression. Arrowheads point to

ectopic sprouts. n.s. not significant (two-tailed t-test). Ct values can be found in Figure 4—source data 1. Scale bars: A, C, 20 mm; B, 15 mm; D, 30 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Ct values of RT-qPCR.

Figure supplement 1. Apelin signaling functions downstream of Notch signaling in ECs.
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Figure 5. Apelin signaling positively regulates EC metabolism. (A - B) Extracellular acidification aate (ECAR) (A) and oxygen consumption rates (OCR)

(B) in siScr and APLN+APLNR siRNA-treated HUVECs under basal conditions and in response to oligomycin, fluoro-carbonyl cyanide phenylhydrazone

(FCCP) and antimycin A (AA)/rotenone. (A) Reduced basal and maximal glycolytic activity in APLN+APLNR siRNA-treated compared to siScr-treated

HUVECs. (B) No significant difference in oxygen consumption in APLN+APLNR siRNA-treated compared to siScr-treated HUVECs. (C) Reduced c-MYC

Figure 5 continued on next page
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formation by Latrunculin B treatment reduces ISV sprout length, suggesting that the ISV sprouting

defects in apln mutants is caused by the filopodia defects. However, one cannot exclude the possi-

bility that defects in EC numbers are also contributing to the ISV sprouting defects.

While we observed a severe angiogenesis phenotype when Apelin signaling was impaired, global

overexpression of apln did not lead to ectopic sprouting. However, these experiments were done in

the presence of endogenous Apelin, and thus, it is possible that the endogenous Apelin gradient

prevents ECs from ectopic sprouting. In addition, Apelin might need to be expressed from a dis-

crete source, rather than globally, to elicit a sprouting response.

During sprouting angiogenesis, ECs within a sprout are highly heterogenous in their shape, gene

expression and function, which led to the model of tip and stalk cells (Gerhardt et al., 2003). While

differences in expression between tip and stalk cells have been reported for several genes

(Tammela et al., 2008), (Hellström et al., 2007; Siekmann and Lawson, 2007; Leslie et al., 2007;

Suchting et al., 2007; del Toro et al., 2010; Bussmann et al., 2011; Herbert et al., 2012), little is

known about the molecular differences between sprouting and resting ECs (Schlereth et al., 2018).

By analyzing novel reporter lines for apln and aplnrb expression, we observed high apln expression

in tip cells while we could not observe any difference in aplnrb expression between tip and stalk cells

(Figure 5—figure supplement 1). Interestingly, aplnrb is highly expressed in sprouting ECs in ISVs

while being absent from non-angiogenic ECs in the DA (Figure 5—figure supplement 1). These

observations are in line with a recent study showing that ECs during tumor angiogenesis can be

labeled by a CreERT2 transgene in the Aplnr locus while quiescent blood vessels in the surrounding

tissue are not labeled (Zhao et al., 2018).

At the molecular level, vascular sprouting and cell positioning within the sprout is tightly regu-

lated by VEGF and Notch signaling (Hellström et al., 2007; Lobov et al., 2007; Siekmann and Law-

son, 2007; Suchting et al., 2007; Jakobsson et al., 2010). In addition to these signaling pathways,

we propose Apelin signaling as a molecular switch to drive ECs into a pro-angiogenic state. In line

with the expression of aplnrb in sprouting but not quiescent ECs, we show that aplnrb function regu-

lates the ability of ECs to sprout or stay quiescent. Similarly, Notch signaling regulates the behavior

of ECs (Siekmann and Lawson, 2007): rbpj deficient ECs contribute to the ISVs while wild-type ECs

stay within the DA (Siekmann and Lawson, 2007). Of note, we found that Notch signaling regulates

the expression of apln in vitro as well as in vivo and that Apelin signaling is a key downstream effec-

tor of Notch signaling during angiogenesis (Figure 5—figure supplement 1). However, it is very

unlikely that apln is a direct Notch target gene since activation of Notch signaling leads to a downre-

gulation of APLN expression. Thus far, two downstream effectors of Notch signaling have been

reported to control angiogenesis namely PTEN (Serra et al., 2015) and CXCR4, another GPCR

(Hasan et al., 2017; Pitulescu et al., 2017). While PTEN has been shown to be required for Notch

induced arrest in EC proliferation (Serra et al., 2015), CXCR4 mediates Notch-controlled EC migra-

tion (Hasan et al., 2017; Pitulescu et al., 2017). PTEN and Apelin both regulate AKT phosphoryla-

tion (Davies et al., 1998; Masri et al., 2004). Thus, one might speculate that AKT function is a

common effector of PTEN and Apelin signaling in EC proliferation. Furthermore, we found that Ape-

lin was required for EC migration in the absence of Notch signaling. Similarly, CXCR4 is required for

EC migration in the absence of Notch signaling (Hasan et al., 2017; Pitulescu et al., 2017). CXCR4

and APLNR both signal through the G-protein Gai (Moepps et al., 1997; Habata et al., 1999), and

they might therefore have similar effects. Gpr124, another GPCR, has been reported to be required

in tip cells during zebrafish angiogenesis (Vanhollebeke et al., 2015), similar to Aplnr. However,

Figure 5 continued

levels in APLN+APLNR siRNA-treated compared to siScr-treated HUVECs. (D) RT-qPCR analysis of PFKFB3 mRNA levels in APLN+APLNR siRNA-

treated compared to siScr-treated HUVECs. (E) Confocal projection images of the blood vasculature in the trunk region of a 54 hpf Tg(kdrl:HsHRAS-

mCherry) animal injected with an EGFP:fli1a:pfkfb3 plasmid. Arrowheads point to formed DLAV fragments while asterisks indicate missing DLAV

fragments. (F) Quantification of the rescue of the DLAV fragment by mosaic pfkfb3 overexpression in aplnrb -/- embryos. n.s. not significant (two-tailed

t-test). Scale bar: E, 50 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Schematic model.
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Gpr124 is required in tip cells only in the brain (Vanhollebeke et al., 2015), while Aplnr is required

in tip cells in the ISVs, where it is most highly expressed.

Sprouting angiogenesis is controlled by genetically encoded signal transducers as well as by the

metabolic state. However, how environmental signals modulate the metabolic activity of ECs is

incompletely understood. Here, we show that Apelin signaling regulates the expression of PFKFB3

and c-MYC, two powerful drivers of EC metabolism (Wilhelm et al., 2016; De Bock et al., 2013b).

Recently it has been shown that Apelin signaling promotes FOXO1 phosphorylation

(Hwangbo et al., 2017), which negatively regulates its activity. Consistent with these findings,

FOXO1 has been shown to suppress c-MYC expression (Wilhelm et al., 2016). Together these data

raise the possibility that Apelin signals through FOXO1 to regulate c-MYC levels. Of note, genetic

deletion of Pfkfb3 in mouse ECs leads to a reduction in their number as well as defects in filopodia

formation and extension (De Bock et al., 2013b), phenocopying aplnr mutant embryos.

Taken together, our findings provide novel insights into a druggable pathway regulating angio-

genesis and suggest that manipulating the angiogenic state of ECs by controlling Apln signaling

might have therapeutic potential to control vascular growth in pathological settings.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

genetic
reagent
(D. rerio)

Tg(fli1a:EGFP)y1 Lawson and Weinstein, 2002 ZFIN: y1

genetic
reagent
(D. rerio)

Tg(fli1a:nEGFP)y7 Roman et al., 2002, ZFIN: y7

genetic
reagent
(D. rerio)

Tg(kdrl:HsHRAS-
mCherry)s896

Chi et al., 2008 ZFIN: s896

genetic
reagent
(D. rerio)

aplnramu296 Helker et al., 2015 ZFIN: mu296

genetic
reagent
(D. rerio)

aplnrbmu281 codes for another
allele of aplnrb
from Helker
et al., 2015

ZFIN: mu281

genetic
reagent
(D. rerio)

aplnmu267 Helker et al., 2015 ZFIN: mu267

genetic
reagent
(D. rerio)

Tg(hsp
70:bmp2b)fr13

Chocron et al., 2007 ZFIN: fr13

genetic
reagent
(D. rerio)

apelabr13 Chng et al., 2013, ZFIN: br13

genetic
reagent
(D. rerio)

Tg(fli:lifeact-
GFP)mu240

Hamm et al., 2016 ZFIN: mu240

genetic
reagent
(D. rerio)

Tg(fli1a:Hsa.
B4GALT1-
mCherry)bns9

Kwon et al., 2016 ZFIN: bns9

genetic
reagent
(D. rerio)

Tg(hsp70:apln)mu269 This manuscript ZFIN: mu269

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

genetic
reagent
(D. rerio)

Tg(kdrl:HsHRAS-
EGFP)mu280

This manuscript ZFIN: mu280

genetic
reagent
(D. rerio)

Tg(apln:EGFP)bns157 This manuscript ZFIN: bns157

genetic
reagent
(D. rerio)

Tg(aplnrb:
aplnrb-TagRFP-
sfGFP)bns309

This manuscript ZFIN: bns309

antibody anti-FOXO1
(rabbit
monoclonal)

Cell Signaling
Technology

Cat#2880 (1:1000)

antibody anti-pThr24FOXO1/pThr32FOXO3a
(rabbit monoclonal)

Cell Signaling
Technology

Cat#9464 (1:1000)

antibody anti-c-MYC
(rabbit
polyclonal)

Cell Signaling
Technology

Cat#9402 (1:1000)

antibody anti-Tubulin
(rabbit polyclonal)

Cell Signaling
Technology

Cat#2148 (1:1000)

other Taqman
probe APLN

Thermo
Fisher
Scientific

Hs00175572_m1

other Taqman
probe APLNR

Thermo
Fisher
Scientific

Hs00270873_s1

other Taqman
probe PFKFB3

Thermo
Fisher
Scientific

Hs00270873_s1

other Taqman
probe ACTB

Thermo
Fisher
Scientific

Hs01060665_g1

commercial
assay or kit

In-Fusion
HD Cloning Plus

Takara Bio Cat# 638910

transfected
construct
(human)

APLN Dharmacon Cat# L-
017023-01-
0005

50 nM

transfected
construct
(human)

APLNR Dharmacon Cat# L-
005430-00-
0005

50 nM

transfected
construct
(human)

ON-TARGETplus
Non-targeting
Pool

Dharmacon Cat# D-
001810-10-05

50 nM

commercial
assay or kit

mMessage
mMachine SP6
Transcription Kit

Thermo
Fisher
Scientific

Cat# AM1340

commercial
assay or kit

DIG RNA
labelling kit

Roche Cat# 11277073910

commercial
assay or kit

SuperScript III
First-Strand
Synthesis System

Thermo
Fisher
Scientific

Cat#18080051

commercial
assay or kit

RNA Clean
and Concentrator
Kit

Zymo Research Cat# R1013

software,
algorithm

ZEN Blue 2012 Zeiss, Germany

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

software,
algorithm

ZEN Black 2012 Zeiss, Germany

software,
algorithm

Imaris -
Version 8.4.0

Bitplane, UK

software,
algorithm

GraphPad
Prism 6

GraphPad
Software, USA

Zebrafish husbandry and strains
All zebrafish housing and husbandry were performed under standard conditions in accordance with

institutional (Max Planck Society) and national ethical and animal welfare guidelines approved by the

ethics committee for animal experiments at the Regierungspräsidium Darmstadt, Germany, as well

as the FELASA guidelines (Aleström et al., 2020). Embryos were staged by hours post fertilization

(hpf) at 28.5˚C (Kimmel et al., 1995). The following lines were used: Tg(fli1a:EGFP)y1 (Lawson and

Weinstein, 2002), Tg(fli1a:nEGFP)y7 (Roman et al., 2002), Tg(kdrl:HsHRAS-mCherry)s896 (Chi et al.,

2008), aplnramu296 (Helker et al., 2015), the aplnrbmu281 allele was generated using the same

CRISPR as in Helker et al., 2015 and contains a 4 bp insertion 137 bp downstream of the ATG lead-

ing to a premature stop codon 196 bp downstream of the ATG, aplnmu267 (Helker et al., 2015), Tg

(hsp70:bmp2b)fr13 (Chocron et al., 2007), apelabr13 (Chng et al., 2013), Tg(fli1a:LIFEACT-GFP)mu240

(Hamm et al., 2016), Tg(fli1a:Hsa.B4GALT1-mCherry)bns9 (Kwon et al., 2016), Tg(hsp70:apln)mu269

(this study), Tg(kdrl:HsHRAS-EGFP)mu280 (this study), Tg(apln:EGFP)bns157 (this study) and Tg(aplnrb:

aplnrb-TagRFP-sfGFP)bns309 (this study).

Generation of the TgBAC(apln:EGFP)bns157, TgBAC(aplnrb:aplnrb-TagRFP-
sfGFP)bns309, Tg(kdrl:HsHRAS-EGFP)mu280, and Tg(hsp70l:apln)mu269lines
To generate the apln and aplnrb bacterial artificial chromosome (BAC) constructs, we used the BAC

clones RP71-2G21 containing the apln locus and CH211-102K containing the aplnrb locus. All recom-

bineering steps were performed as described in Bussmann and Schulte-Merker, 2011 with the

modifications as described in Helker et al., 2019. The following homology arms were used to gener-

ate the targeting PCR products of the EGFP_Kan, and TagRFP-sfGFP_Kan cassettes:apln-HA1: 5’-

ccactacagtatatcagctagcgactggcagggaaacggaggggagagcaaccatggtgagcaagggcgaggag-3’ and apln-

HA2: 5’-cacagcagagaaaccaccagcacaatcaccagcgtcaagatcttcacattttccagaagtagtgaggag-3’;aplnrb-

HA1:5’-gctccctttcttcacagaagaccgaggcccagtcgctggctacgaaggtgcttggacctggactcggatc-‘3 and aplnrb-

HA2: 5’-taattgctgacttgttaccccaattctgcgtcacccttccgttctcctcctgaccatgattacgccaagc-‘3.

To generate the Tg(kdrl:HsHRAS-EGFP) and Tg(hsp70:apln) lines, the gateway recombination sys-

tem (Invitrogen) using entry vectors and the pTolDest destination vector (Villefranc et al., 2007)

was used. The apln coding sequence was amplified from cDNA. 100 pg DNA of the plasmids and 50

pg of tol2 mRNA were injected into one-cell stage zebrafish embryos for stable germline

transmission.

Morpholino injections
Morpholinos were obtained from Gene Tools, resuspended in distilled H2O and around 2 nl was

injected into 1 cell stage embryos. The following morpholinos were used: aplnrb MO (Helker et al.,

2015) at 0.5 ng/embryo, dll4 MO (Hogan et al., 2009) at 3 ng/embryo. An equal amount of the

standard control MO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’ was used for each experiment.

Transplantation experiments
At the sphere stage, cells were removed from Tg(kdrl:HsHRAS-mCherry) donor embryos and trans-

ferred to Tg(fli1a:EGFP) aplnr mutant hosts using a glass capillary. Transplanted ECs were identified

by transgenic mCherry expression.
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Whole-mount in situ hybridization
Single in situ hybridizations were performed as described (Thisse and Thisse, 2008; Helker et al.,

2013). The following probes were synthesized: apln (Helker et al., 2015), apela (Chng et al., 2013),

aplnra (Helker et al., 2015), and aplnrb (Helker et al., 2015).

Confocal microscopy
Zebrafish larvae were mounted in 1% low melt agarose. Egg water and agarose were supplemented

with 19.2 mg/l Tricaine. All fluorescent images were acquired using an upright Zeiss LSM 780, 800 or

880 or a Leica SP5 or SP8 confocal microscope. Maximum projection images were analyzed and gen-

erated using Imaris (Bitplane).

Quantification of mutant phenotypes
For every embryo, somites 5 to 15 were analyzed (normal: 10 fully developed ISVs and connected

DLAV; mild: 10 ISVs fully developed but no DLAV; strong: 1 to 6 ISVs shortened; severe: 1 to 10 ISVs

shortened).

Quantification of filopodia
Only filopodia with more than 10 mm in length were used for quantification.

ISVs were categorized as filopodia rich ISVs (more than six filopodia) or filopodia poor ISVs (less

than six filopodia). A total of 49 ISVs were quantified for the Ctr MO and 103 ISVs for the aplnrb

MO.

pfkfb3 rescue experiments
pfkfb3 was cloned downstream of a bidirectional fli1a promoter driving EGFP in one direction and

pfkfb3 in the other direction. aplnrb mutant embryos were injected with 20 pg EGFP:fli1a:pfkfb3

DNA and 30 pg Tol2 mRNA to generate mosaic blood vessels. EGFP positive tip cells were analyzed

to quantify the percentage of connected DLAV segments. Neighboring EGFP negative tip cells were

used as controls.

Cell culture
Pooled human umbilical vein endothelial cells (HUVECs) were purchased from Lonza (#CC-2519) and

cultured in endothelial basal medium (EBM, Lonza) supplemented with hydrocortisone (1 mg/ml),

bovine brain extract (12 mg/ml), gentamicin (50 mg/ml), amphotericin B (50 ng/ml), epidermal growth

factor (10 ng/ml), and 10% fetal bovine serum (FBS, Life Technologies). HUVECs were tested for

mycoplasma and cultured until the fourth passage. Cells were maintained at 37˚C in a humidified

atmosphere with 5% CO2.

RNA interference
To silence APLN and APLNR gene expression, HUVECs were transfected with 50 nM APLN and

APLNR ON-TARGET SMARTpool siRNA (Dharmacon). As a control, a non-targeting siRNA pool was

used (Dharmacon). HUVECs were grown to 70% confluency and transfected with Lipofectamine

RNAiMAX (Life Technologies) according to manufacturer’s instructions.

Western blot analysis and antibodies
Western blot analyses were performed with precast gradient gels (Bio-Rad) using standard methods.

Briefly, cells were lysed in RIPA buffer (Sigma; 150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium

deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0) supplemented with Complete Protease Inhibitor

Cocktail (Roche) and 1 mM PMSF. Proteins were separated by SDS-PAGE (Tris-glycine gels with Tris/

glycine/SDS buffer, Bio-Rad) and transferred onto nitrocellulose membranes using the Trans Turbo

Blot system (Bio-Rad). Membranes were probed with specific primary antibodies and then with per-

oxidase-conjugated secondary antibodies. The following primary antibodies were used: FOXO1 (Cell

Signaling Technology, #2880, 1:1000), pThr24FOXO1/pThr32FOXO3a (Cell Signaling Technology,

#9464, 1:1000), c-MYC (Cell Signaling Technology, #9402, 1:1000), Tubulin (Cell Signaling Technol-

ogy, #2148, 1:1000), Secondary antibodies are peroxidase-conjugated Goat IgGs (1:5000) purchased

from Jackson Immuno Research Labs. The target proteins were visualized by chemiluminescence
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using an ECL detection kit (Clarity Western ECL Substrate, Bio-Rad) and a ChemiDoc MP Imaging

System (Bio-Rad).

RT-qPCR
Total RNA from HUVECs was extracted using a RNeasy Mini Kit (Qiagen). Reverse transcription poly-

merase chain reaction (RT-PCR) was performed using a SuperScript III First-Strand Synthesis System

(Invitrogen) according to manufacturer’s instructions. RT-qPCR was carried out to quantify gene

expression levels on a CFX connect Realtime System (Bio-Rad) with the following Taqman probes:

APLN Hs00175572_m1, APLNR Hs00270873_s1, PFKFB3 Hs00270873_s1. Each sample was normal-

ized to the housekeeping probe ACTB Hs01060665_g1.

Metabolic assay
The metabolism of cells was assessed by the measurement of extracellular acidification (ECAR) and

oxygen consumption rates (OCR) using a Seahorse XFe96 analyser (Agilent). Four hours before the

measurement, 40.000 HUVECs per well were seeded in a fibronectin-coated XFe96 microplate. The

measurement was done following manufacturer’s protocol. To monitor glycolysis, the glycolysis

stress test kit was used. The following substances were sequentially injected after a baseline mea-

surement: Glucose (10 mM), Oligomycin (3 mM) and 2-Deoxyglucose (2-DG; 100 mM). The oxygen

consumption rate was assessed using the Mito stress test kit. After a baseline measurement, the fol-

lowing substances were sequentially injected: Oligomycin (3 mM), the mitochondrial uncoupler car-

bonyl cyanide-4-(trifluoromethoxy)phenyl-hydrazone (FCCP; 1 mM) as well as a mixture of antimycin

A (1.5 mM) and rotenone (3 mM).

Statistics
Standard error of the mean and P-values from a two-tailed t-test were calculated using Prism.
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Krützfeldt A, Spahr R, Mertens S, Siegmund B, Piper HM. 1990. Metabolism of exogenous substrates by
coronary endothelial cells in culture. Journal of Molecular and Cellular Cardiology 22:1393–1404. DOI: https://
doi.org/10.1016/0022-2828(90)90984-A, PMID: 2089157

Kwon HB, Wang S, Helker CS, Rasouli SJ, Maischein HM, Offermanns S, Herzog W, Stainier DY. 2016. In vivo
modulation of endothelial polarization by apelin receptor signalling. Nature Communications 7:11805.
DOI: https://doi.org/10.1038/ncomms11805, PMID: 27248505

Lawson ND, Weinstein BM. 2002. In vivo imaging of embryonic vascular development using transgenic zebrafish.
Developmental Biology 248:307–318. DOI: https://doi.org/10.1006/dbio.2002.0711

Helker et al. eLife 2020;9:e55589. DOI: https://doi.org/10.7554/eLife.55589 18 of 20

Research article Developmental Biology

https://doi.org/10.1038/ncb3574
http://www.ncbi.nlm.nih.gov/pubmed/28714969
https://doi.org/10.2353/ajpath.2007.070471
https://doi.org/10.2353/ajpath.2007.070471
http://www.ncbi.nlm.nih.gov/pubmed/17884970
https://doi.org/10.1242/dev.091876
http://www.ncbi.nlm.nih.gov/pubmed/23698350
https://doi.org/10.7554/eLife.06726
https://doi.org/10.7554/eLife.06726
https://doi.org/10.1242/dev.172569
http://www.ncbi.nlm.nih.gov/pubmed/31142539
https://doi.org/10.1038/nature05571
https://doi.org/10.1038/nature05571
http://www.ncbi.nlm.nih.gov/pubmed/17259973
https://doi.org/10.1016/j.cub.2012.07.037
https://doi.org/10.1016/j.cub.2012.07.037
http://www.ncbi.nlm.nih.gov/pubmed/22921365
https://doi.org/10.1242/dev.039990
http://www.ncbi.nlm.nih.gov/pubmed/19906867
https://doi.org/10.1126/scitranslmed.aad4000
http://www.ncbi.nlm.nih.gov/pubmed/28904225
https://doi.org/10.1038/ncb2103
http://www.ncbi.nlm.nih.gov/pubmed/20871601
https://doi.org/10.1016/j.ydbio.2007.03.004
http://www.ncbi.nlm.nih.gov/pubmed/17412318
https://doi.org/10.1038/sj.emboj.7601982
http://www.ncbi.nlm.nih.gov/pubmed/18200044
https://doi.org/10.1182/blood-2009-07-232306
http://www.ncbi.nlm.nih.gov/pubmed/20185589
https://doi.org/10.1038/onc.2011.489
http://www.ncbi.nlm.nih.gov/pubmed/22037214
https://doi.org/10.1016/j.devcel.2015.02.024
http://www.ncbi.nlm.nih.gov/pubmed/25920569
https://doi.org/10.1002/aja.1002030302
http://www.ncbi.nlm.nih.gov/pubmed/8589427
http://www.ncbi.nlm.nih.gov/pubmed/8589427
https://doi.org/10.1101/cshperspect.a006502
https://doi.org/10.1093/cvr/cvq052
http://www.ncbi.nlm.nih.gov/pubmed/20176814
https://doi.org/10.1016/0022-2828(90)90984-A
https://doi.org/10.1016/0022-2828(90)90984-A
http://www.ncbi.nlm.nih.gov/pubmed/2089157
https://doi.org/10.1038/ncomms11805
http://www.ncbi.nlm.nih.gov/pubmed/27248505
https://doi.org/10.1006/dbio.2002.0711
https://doi.org/10.7554/eLife.55589


Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J. 2007. Endothelial signalling by
the notch ligand Delta-like 4 restricts angiogenesis. Development 134:839–844. DOI: https://doi.org/10.1242/
dev.003244, PMID: 17251261

Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ. 2007. Delta-like
ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 104:3219–3224.
DOI: https://doi.org/10.1073/pnas.0611206104, PMID: 17296940

Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y. 2004. Apelin (65-77) activates p70 S6 kinase and is
mitogenic for umbilical endothelial cells. The FASEB Journal 18:1909–1911. DOI: https://doi.org/10.1096/fj.04-
1930fje, PMID: 15385434

Mertens S, Noll T, Spahr R, Krutzfeldt A, Piper HM. 1990. Energetic response of coronary endothelial cells to
hypoxia. American Journal of Physiology-Heart and Circulatory Physiology 258:H689–H694. DOI: https://doi.
org/10.1152/ajpheart.1990.258.3.H689

Moepps B, Frodl R, Rodewald HR, Baggiolini M, Gierschik P. 1997. Two murine homologues of the human
chemokine receptor CXCR4 mediating stromal cell-derived factor 1alpha activation of Gi2 are differentially
expressed in vivo. European Journal of Immunology 27:2102–2112. DOI: https://doi.org/10.1002/eji.
1830270839, PMID: 9295051

Papangeli I, Kim J, Maier I, Park S, Lee A, Kang Y, Tanaka K, Khan OF, Ju H, Kojima Y, Red-Horse K, Anderson
DG, Siekmann AF, Chun HJ. 2016. MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular
maturation. Nature Communications 7:11268. DOI: https://doi.org/10.1038/ncomms11268, PMID: 27068353

Pauli A, Norris ML, Valen E, Chew GL, Gagnon JA, Zimmerman S, Mitchell A, Ma J, Dubrulle J, Reyon D, Tsai
SQ, Joung JK, Saghatelian A, Schier AF. 2014. Toddler: an embryonic signal that promotes cell movement via
apelin receptors. Science 343:1248636. DOI: https://doi.org/10.1126/science.1248636, PMID: 24407481

Phng L-K, Stanchi F, Gerhardt H. 2013. Filopodia are dispensable for endothelial tip cell guidance. Development
140:4031–4040. DOI: https://doi.org/10.1242/dev.097352

Pitkin SL, Maguire JJ, Kuc RE, Davenport AP. 2010. Modulation of the apelin/APJ system in heart failure and
atherosclerosis in man. British Journal of Pharmacology 160:1785–1795. DOI: https://doi.org/10.1111/j.1476-
5381.2010.00821.x, PMID: 20649580

Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF,
Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH. 2017. Dll4 and notch signalling
couples sprouting angiogenesis and artery formation. Nature Cell Biology 19:915–927. DOI: https://doi.org/10.
1038/ncb3555, PMID: 28714968

Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider
RJ, Weinstein BM. 2002. ’Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels’.
Development 129:3009–3019. PMID: 12050147

Sawane M, Kajiya K, Kidoya H, Takagi M, Muramatsu F, Takakura N. 2013. Apelin inhibits diet-induced obesity
by enhancing lymphatic and blood vessel integrity. Diabetes 62:1970–1980. DOI: https://doi.org/10.2337/
db12-0604, PMID: 23378608

Schlereth K, Weichenhan D, Bauer T, Heumann T, Giannakouri E, Lipka D, Jaeger S, Schlesner M, Aloy P, Eils R,
Plass C, Augustin HG. 2018. The transcriptomic and epigenetic map of vascular quiescence in the continuous
lung endothelium. eLife 7:e34423. DOI: https://doi.org/10.7554/eLife.34423, PMID: 29749927

Serra H, Chivite I, Angulo-Urarte A, Soler A, Sutherland JD, Arruabarrena-Aristorena A, Ragab A, Lim R,
Malumbres M, Fruttiger M, Potente M, Serrano M, Fabra À, Viñals F, Casanovas O, Pandolfi PP, Bigas A,
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