File:Damped spring.gif

Damped_spring.gif (110 × 359 pixels, file size: 207 KB, MIME type: image/gif, looped, 65 frames, 4.6 s)

Summary

Description Illustration of en:Damping
Date (UTC)
Source self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code).
Author Oleg Alexandrov
Other versions Harmonic version
GIF development
InfoField
 
This diagram was created with MATLAB.
Source code
InfoField

MATLAB code

% Illustration of a damped spring

function main()

% colors
   black =    [0, 0, 0];
   white    = 0.99*[1, 1, 1];
   cobalt   = [0 	71 	171]/256;
   pblue    = [0 	49 	83]/256;
   tene     = [205 	87 	0]/256;
   wall_color   = pblue;
   spring_color = cobalt;
   mass_color    = tene;
   a=0.65; bmass_color   = a*mass_color+(1-a)*black;
   % linewidth and fontsize
   lw=2;
   fs=20;

   ww = 0.5;  % wall width
   ms = 0.25; % the size of the mass        
   sw=0.1;    % spring width
   curls = 8;

   A = 0.45; % the amplitude of spring oscillations
   B = -1; % the y coordinate of the base state (the origin is higher, at the wall)

   %  Each of the small lines has length l
   l = 0.05;

   N = 15;  % times per oscillation 
   No = 4; % number of oscillations
   damping = 0.1; % controls the damping
   for i = 1:(N*No+5)

      % set up the plotting window
      figure(1); clf; hold on; axis equal; axis off;

   
      t = 2*pi*(i-1)/(N-0)+pi/2; % current time
      H= A*exp(-damping*t)*sin(t) +  B;      % position of the mass

      % plot the spring from Start to End
      Start = [0, 0]; End = [0, H];
      [X, Y]=do_plot_spring(Start, End, curls, sw);
      plot(X, Y, 'linewidth', lw, 'color', spring_color); 

      % Here we cheat. We modify the point B so that the mass is attached exactly at the end of the
      % spring. This should not be necessary. I am too lazy to to the exact calculation.
      K = length(X); End(1) = X(K); End(2) = Y(K);
            
      % plot the wall from which the spring is hanging
      plot_wall(-ww/2, ww/2, l, lw, wall_color);

      % plot the mass at the end of the spring
      X=[-ms/2 ms/2 ms/2 -ms/2 -ms/2 ms/2]+End(1); Y=[0 0 -ms -ms 0 0]+End(2);
      H=fill(X, Y, mass_color, 'EdgeColor', bmass_color, 'linewidth', lw);

	  
	  % the bounding box
	  Sx = -0.4*ww;  Sy = B-A*exp(-damping*3*pi/2)-ms+0.05; 
	  Lx = 0.4*ww+l; Ly=l;
	  axis([Sx, Lx, Sy, Ly]);
	  plot(Sx, Sy, '*', 'color', white); % a hack to avoid a saveas to eps bug
	  
      saveas(gcf, sprintf('Spring_frame%d.eps', 1000+i), 'psc2') %save the current frame
      disp(sprintf('Spring_frame%d', 1000+i)); %show the frame number we are at
      
      pause(0.1);
      
   end

% The following command was used to create the animated figure.    
% convert -antialias -loop 10000  -delay 7 -compress LZW Spring_frame10* Damped_spring.gif
   

function [X, Y]=do_plot_spring(A, B, curls, sw);
%  plot a 3D spring, then project it onto 2D. theta controls the angle of projection.
%  The string starts at A and ends at B

   % will rotate by theta when projecting from 1D to 2D
   theta=pi/6;
   Npoints = 500;
   
   % spring length
   D = sqrt((A(1)-B(1))^2+(A(2)-B(2))^2);
   
   X=linspace(0, 1, Npoints);

   XX = linspace(-pi/2, 2*pi*curls+pi/2, Npoints);
   Y=-sw*cos(XX);
   Z=sw*sin(XX);
   
%  b gives the length of the small straight segments at the ends
%  of the spring (to which the wall and the mass are attached)
   b= 0.05; 

% stretch the spring in X to make it of length D - 2*b
   N = length(X);
   X = (D-2*b)*(X-X(1))/(X(N)-X(1));
   
% shift by b to the right and add the two small segments of length b
   X=[0, X+b X(N)+2*b]; Y=[Y(1) Y Y(N)]; Z=[Z(1) Z Z(N)]; 

   % project the 3D spring to 2D
   M=[cos(theta) sin(theta); -sin(theta) cos(theta)];
   N=length(X);
   for i=1:N;
      V=M*[X(i), Z(i)]';
      X(i)=V(1); Z(i)=V(2);
   end

%  shift the spring to start from 0
   X = X-X(1);
   
% now that we have the horisontal spring (X, Y) of length D,
% rotate and translate it to go from A to B
   Theta = atan2(B(2)-A(2), B(1)-A(1));
   M=[cos(Theta) -sin(Theta); sin(Theta) cos(Theta)];

   N=length(X);
   for i=1:N;
      V=M*[X(i), Y(i)]'+A';
      X(i)=V(1); Y(i)=V(2);
   end

function plot_wall(S, E, l, lw, wall_color)

%  Plot a wall from S to E.
   no=20; spacing=(E-S)/(no-1);
   
   plot([S, E], [0, 0], 'linewidth', 1.8*lw, 'color', wall_color);

   V=l*(0:0.1:1);

   for i=0:(no-1)
      plot(S+ i*spacing + V, V, 'color', wall_color)
   end

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

24 June 2007

image/gif

ab6d3f737de32c1fb2494cfbb53cb191f19599ee

211,568 byte

4.549999999999999 second

359 pixel

110 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:11, 11 October 2008Thumbnail for version as of 17:11, 11 October 2008110 × 359 (207 KB)Nard the Bardreplace lost file
03:54, 24 June 2007No thumbnail110 × 359 (207 KB)Oleg AlexandrovIllustration of en:Damping {{Information |Description= |Source=self-made with en:Matlab. Converted to gif animation with the en:ImageMagick convert tool (see the specific command later in the code). |Date= 02:42, 24 June 2007 (UTC) |Autho

The following 2 pages use this file:

Global file usage

The following other wikis use this file: