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Abstract 

Background Low‑frequency variants play an important role in breast cancer (BC) susceptibility. Gene‑based meth‑
ods can increase power by combining multiple variants in the same gene and help identify target genes.

Methods We evaluated the potential of gene‑based aggregation in the Breast Cancer Association Consortium 
cohorts including 83,471 cases and 59,199 controls. Low‑frequency variants were aggregated for individual genes’ 
coding and regulatory regions. Association results in European ancestry samples were compared to single‑marker 
association results in the same cohort. Gene‑based associations were also combined in meta‑analysis across individu‑
als with European, Asian, African, and Latin American and Hispanic ancestry.

Results In European ancestry samples, 14 genes were significantly associated (q < 0.05) with BC. Of those, two genes, 
FMNL3 (P = 6.11 ×  10−6) and AC058822.1 (P = 1.47 ×  10−4), represent new associations. High FMNL3 expression has 
previously been linked to poor prognosis in several other cancers. Meta‑analysis of samples with diverse ancestry 
discovered further associations including established candidate genes ESR1 and CBLB. Furthermore, literature review 
and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2, 
LSP1, MAP3K1, and SRGAP2C.

Conclusions Using extended gene‑based aggregation tests including coding and regulatory variation, we report 
identification of plausible target genes for previously identified single‑marker associations with BC as well as the 
discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the 
identification of otherwise missed disease associations as ESR1 (P = 1.31 ×  10−5), demonstrating the importance of 
diversifying study cohorts.

Keywords Breast cancer susceptibility, Diverse ancestry, Rare variants, Gene regulation, Genome‑wide association 
study
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Background
Breast cancer is the most commonly diagnosed cancer in 
women worldwide, making up 11.7% of new cancer diag-
noses in 2020 [1]. Heritability estimates for breast can-
cer range from 13% [2] to 30% [3]. Breast cancer follows 
a predominantly complex genetic architecture, which 
in large parts remains unsolved to this day [4]. Identify-
ing disease predisposing genes in breast cancer can help 
understand pathological pathways and discover new 
clinical biomarkers or drug targets. However, linking sin-
gle-marker associations identified in genome-wide asso-
ciation studies (GWAS) to target genes is still ongoing 
[5], precluding better mechanistic disease understanding.

The analysis of data from diverse ancestral groups can 
uncover new insights about genetic risk factors due to 
ancestral differences in variant frequency and linkage 
disequilibrium patterns, especially in the context of low-
frequency variants, as well as variation in environmental 
factors [6–8]. Thus, extending genetic studies to diverse 
populations and groups is a necessary advance to gain a 
comprehensive understanding of genetic architectures of 
complex diseases.

In this study, we extend the recently published gene 
aggregation method combining coding and regula-
tory variants [9] to large-scale whole-genome genotyp-
ing cohorts to uncover novel genes implicated in breast 
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cancer development. We used data from the Breast Can-
cer Association Consortium (BCAC) which has been 
studied previously including GWAS [10, 11], candidate 
gene analysis [12], and polygenic risk score analysis [13, 
14].

We employ the following strategies to empower the 
discovery of novel gene-disease associations using data 
from BCAC: (1) aggregation of all coding and regulatory 
variants linked to a single gene, (2) effective utilization 
of low-frequency variants, (3) exploiting genetic diver-
sity between different ancestral groups, and (4) restrict-
ing multiple testing burden to one statistical test per gene 
(~ 18,500).

Methods
Samples and genotype data
We used data on 142,670 individuals from BCAC. 
Detailed description of recruitment criteria, sample 
demographics, genotyping quality control, and impu-
tation of additional markers have been reported previ-
ously [10, 15, 16]. In short, 83,471 breast cancer cases 
and 59,199 controls of diverse ancestry were recruited in 
80 studies (see Fig.  1A, Additional file  1: Table  S1). For 
each study, country of origin, and case and control num-
bers can be found in Additional file 1: Table S2. Samples 
were genotyped using the OncoArray (Illumina) [17], a 
custom SNP array enriched for cancer-associated genetic 
regions.

Quality control of genotype data
Sample quality control based on genotype and impu-
tation quality has been performed previously [10]. In 
short, samples were genotyped on the custom OncoAr-
ray. Genotyped markers failing any of the following 
quality criteria were excluded: (i) call rate above 98% 
in all consortia, (ii) MAF < 1%, (iii) no significant devia-
tion from Hardy–Weinberg Equilibrium (controls: 
P < 10 − 7, cases: P < 10 − 12). Markers were imputed in 
a two-stage approach using shapeit2 and impute2 (V2) 
and the October 2014 (version 3) release of the 1000 
Genomes dataset as reference panel [10]. The imputa-
tion was carried out for 5-Mb segments of the genome 
and for groups of 10,000 samples to reduce the compu-
tation burden. We included only low-frequency vari-
ants (minor allele frequency MAF < 0.05). Variants with 
imputation accuracy scores (generated with IMPUTE 
version 2) below 0.7 were excluded from analysis.

Selection of genetic elements
Our previously developed analysis pipeline “mummy” 
[9] was used to identify coding and regulatory regions 
for individual genes and to prepare input data for 

robust rare variant SNPset association testing software 
MONSTER [18]. Aggregation tests were performed for 
genes defined in GENCODE v25 and with at least three 
but not more than 5000 low-frequency variants.

For each of these genes, we identified genetic ele-
ments that are likely to contain relevant functional or 
expression variation using the mummy wrapper. These 
include the exomes and untranslated regions (UTR) 
of the gene. We selected additional regulatory ele-
ments that have been shown to be enriched for com-
plex trait associations [19, 20]: promoter, enhancer, 
and transcription-factor-binding units if they could be 
linked to the gene. These elements were identified from 
the Ensembl build 84 resource. The link of regulatory 
genetic elements to genes was either based on physical 
overlap with the coding region, e.g., when an element 
was located within an intron of the gene, or physi-
cal overlap with significantly associated eQTLs for the 
specific gene (see Fig. 1B). Thus, we included the three 
types of regulatory elements if there was evidence that 
they affect expression levels of the gene. This was based 
on eQTL data for all available cell types from GTEx 
version 6.

For each gene, all the low-frequency variants in these 
selected genetic elements were extracted and format-
ted to the MONSTER required input and weighted 
using Phred-scaled EigenPC pathogenicity scores [21]. 
EigenPC scores have been previously shown to offer the 
best balance between coding and noncoding variants for 
application in aggregation testing [9].

The original implementation of “mummy” was adapted 
to allow for the input of genotype data based on DNA 
microarrays instead of sequencing data in VCF format. 
The adapted “mummy” code is accessible on github here: 
https:// github. com/ stef- muell er/ mummy_ for_ genot ypes.

Gene‑based aggregation test
MONSTER (Minimum P‐value Optimized Nuisance 
parameter Score Test Extended to Relatives) was used 
to perform SNPset variant aggregation tests for the 
variants selected for each gene [18]. MONSTER gen-
eralizes the SKAT-O algorithm to allow for testing of 
related samples and sample cohorts with underly-
ing population structure using a mixed effects model. 
SKAT-O is a unified test that combines a variance com-
ponent and a burden test. The original MONSTER code 
was adapted to allow for the inclusion of larger sample 
numbers. The adapted MONSTER code is available on 
github here: https:// github. com/ stef- muell er/ MONST 
ER.

Samples were processed in 15 study groupings due to 
the computational demand. Groups were formed based 
on study origin and genetic ancestry of samples while 
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ensuring balanced case and control numbers. Additional 
file  1: Table  S3 lists the number of analyzed genes for 
each cohort. Sample numbers per cohort can be found in 
Additional file 1: Table S4.

The mixed effects models testing for gene associations 
included relatedness in the form of a kinship matrix as a 
random effect. The kinship matrix was derived by, first, 
creating an LD pruned marker set using plink2 [22] (win-
dow size: 50 kb, step size: 5, r2 threshold: 0.5, minor allele 
frequency threshold: > 0.2), second, calculating a relation-
ship matrix using gemma [23], third, calculating individ-
uals’ inbreeding coefficients using plink2 –ibc command, 

and fourth, combining relationship matrix and inbreed-
ing coefficients to the MONSTER required input format. 
Additionally, age and for some cohorts the recruitment 
study or study country were included in the model as 
fixed effects (Additional file 1: Table S5).

As is common for SNPset aggregation tests, MON-
STER reports as output P-values but not effect sizes or 
effect directions for linear mixed model aggregation 
tests. To check for unaccounted population stratification 
effects, raw aggregation test results per cohort were plot-
ted against the theoretical distribution of P-values using 
quantile–quantile (QQ) plots (see Additional file 1: Figure 

Fig. 1 Study design. A Breast cancer patients and control individuals included in this study originate from 33 different study center countries, and 
comprise samples of African, Asian, European, or Latin American and Hispanic ancestry. B The mummy implemented extended SKAT‑O analysis 
includes variants located in coding regions with an extended window and variants located in linked regulatory regions. Regulatory regions were 
identified based on overlap with genetic range of coding features or based on presence of gene‑specific eQTLs in GTEx data in those regulatory 
regions
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S1), and genetic inflation factors lambda and lambda1000 
were calculated (see Additional file 1: Table S4). Lambda 
is dependent on sample size and will be increased for 
large samples. Lambda1000 has been established to be 
comparable across studies. It corrects for sample size.

Two of the 15 cohorts, one of European ancestry and 
the Latin American and hispanic group, were found to 
have increased genetic inflation factors with lambda1000 
metrics of 1.32 and 1.14, respectively. Thus, raw aggrega-
tion test P-values for these two cohorts were corrected 
using the genomic control method.

Meta‑analysis of aggregation tests
Two meta-analyses were performed to combine raw 
aggregation association results from individual cohorts. 
First, to allow for comparison with the published GWAS 
[10] results based on the same sample set, all cohorts 
including samples of predominantly European ancestries 
(twelve cohorts, all named “eur*”) were combined in an 
all-European meta-analysis. Next, a second meta-analysis 
was performed including all cohorts.

The Stouffer [24, 25] method was used to perform 
the meta-analysis. It combines the z-statistic derived 
from P-values of the aggregate test for each cohort after 
weighting with the square root of the respective sample 
size. For cohorts with increased genetic inflation factor 
lambda1000, genetic control corrected P-values, rather 
than the raw P-values, were included in the meta-analysis. 
The R package metaP (version 1.3) was used to perform 
Stouffer meta-analysis. No evidence for increased inflation 
was observed for the meta-analysis results based on QQ 
plots and inflation estimates (Additional file 1: Figure S2).

Benjamini–Hochberg false discovery rate (FDR) 
method was used to correct the meta-analysis results for 
multiple testing. To ensure robust association signals, 
genes with missing results for the majority of cohorts 
were excluded from further analysis. Significant hits were 
defined as those with FDR-corrected P-values < 0.05.

Follow‑up on significantly associated genes
We evaluated whether any of the significant gene-based 
associations with breast cancer overlapped with signifi-
cant single-marker associations arising from the Euro-
pean ancestry GWAS. The genome-wide association 
analysis for single markers in the European ancestry 
samples has been previously described [10]. The com-
parison was based on coding and regulatory regions of 
the gene-based hits with a flanking region of 100 kb. The 
flanking region of 100 kb was chosen to ensure inclusion 
of the majority of cis-eQTL elements which, based on 
GTEx data of 44 tissues, have a median distance of 28.9 
or 50.1 kb from the transcription start site (TSS) of genes 
for primary and secondary cis-eQTLs, respectively [26]. 

Loci that included SNPs with P-values below 5 ×  10−8 
from the single-marker association analysis in the exam-
ined regions were classified as previously identified 
breast cancer association hits.

We carried out bioinformatic annotations for each 
significantly associated gene. Four open-source data-
bases were queried for prior evidence of a causal role of 
the genes in breast cancer pathology specifically as well 
as any cancer pathology. First, the ClinVar database was 
used to identify any putative pathogenic, single-gene 
variants reported previously in the context of the phe-
notypes of interest. The ClinVar database was queried on 
the 1st of March 2021. Pathogenic, single-gene ClinVar 
variant entries with at least one star review status were 
classified as supportive evidence.

Second, the aggregated gene-disease database MalaC-
ards [27] was used to identify any significant correlation 
of genes and phenotypes of interest based on 68 differ-
ent data sources and utilizing NLP (Natural Language 
Processing) algorithms to include evidence from non-
structured data sources like research publications. Sup-
portive evidence of causal role of genes was defined as a 
MalaCards search relevance score over 1. The MalaCard 
database was queried on the 1st of March 2021.

Third, the expert-curated Genetics Home Reference 
data was queried for all genes of interest and examined 
for evidence of causal role in breast cancer or any can-
cer. The queried data version was published on the 28th 
of July 2020.

And fourth, investigating possible roles as driver genes 
in breast cancer and cancer pathogenicity, we queried the 
COSMIC Cancer Gene Census data (version 92) which 
classifies genes as either (1) TIER1: genes with strong 
evidence of causal role promoting cancer such as docu-
mented relevance in cancer and oncogenic mutations, (2) 
TIER2: genes with substantial indications to play a role 
in cancer etiology, and (3) untiered genes: genes with no 
substantial evidence of a causal role.

Results
Gene-wise aggregation analysis was performed in 83,471 
breast cancer patients and 59,199 matched controls. Of 
those 142,670 samples, 83.4% (n = 119,014) were of Euro-
pean ancestry, with 10.7% (n = 15,321) of samples being of 
Asian, 4.1% (n = 5784) of African, or 1.8% (n = 2551) Latin 
American and Hispanic ancestry, respectively. Samples 
were recruited to studies in 33 countries (see Fig. 1A).

All‑European meta‑analysis finds 14 associated breast 
cancer genes
First, we combined gene-wise association results for 
European cohorts in an all-European meta-analysis. After 
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multiple testing correction, we found 14 genes located in 
nine different regions to be significantly associated with 
breast cancer risk (Table 1). Overlap in coding and regu-
latory regions of genes can cause non-unique mapping 
of variants to multiple genes for the association aggrega-
tion test performed in MONSTER. Thus, four loci were 
identified containing more than one associated gene. 
Regional plots for all 14 genes can be found in Additional 
file 1: Figure S3.

For twelve of the 14 associated genes, the region 
(gene plus a 100-kB flanking region) contained markers 
that were individually associated with breast cancer at 
genome-wide significance (P-value < 5 ×  10−8).

Two novel associations
The gene-wise aggregation of low-frequency variants 
based on coding and regulatory features was able to 
extend findings of a standard GWAS analysis. The anal-
ysis identified two novel gene associations that do not 
overlap previously reported single-marker-based loci 
(Fig.  2). The FMNL3 (Formin-Like 3) gene at 12q13.12 
was associated with breast cancer risk with a q-value of 
0.013. It encodes the Formin-like protein 3, a cytoskeletal 
regulator, whose overexpression is associated with cancer 
cell migration, invasion, metastasis, and poor prognosis 
in multiple cancer types, such as colorectal carcinoma 
[28], nasopharyngeal carcinoma [29], and tongue squa-
mous cell carcinoma [30].

The second novel association was found at 4q12 
for AC058822.1 (q-value = 0.020), also named RP11-
231C18.3. This lncRNA gene is a scarcely characterized 
genetic element spanning almost 1 MB.

Gene‑based aggregation can help identify the causal 
genes
To assess whether the gene-based approach can help 
highlight biologically plausible gene candidates, we 
assessed whether other evidence, such as genetic epi-
demiological studies or cell models, supports a role for 
the significantly associated genes in cancer. We queried 
different public databases for links to breast cancer and 
other cancer types for the 14 genes found to be associated 
with breast cancer in the all-European meta-analysis.

Two genes, MAP3K1 and FGFR2, in addition to 
being previously identified in breast cancer-associated 
genetic region in GWAS (see Table 2), are both classi-
fied as TIER1 cancer-driving genes in COSMIC Can-
cer Gene Census. Thus, there is strong evidence that 
somatic mutations in both genes have a functional 
involvement in cancer etiology.

To search for previous causal evidence of ger-
mline mutations in associated genes, we queried 
ClinVar, Genetic Home Reference, and MalaCards 
databases—the last two being an expert-curated gene-
disease database and an aggregation database of 68 
data sources, respectively. Five genes were implicated 

Table 1 Meta‑analysis hits in samples of European ancestry. Results for significant (q < 0.05) gene associations from the meta‑analysis 
of 12 cohorts of European ancestry. Genes with overlapping coding and/or regulatory regions are summarized as a single locus 
defined as the intersection of all included genetic regions. Overlap with single‑marker association results from Michailidou et al. [10] 
are also shown, with new associations identified for FMNL3 and AC058822.1 

Locus (hg38) Stable gene ID Gene Unadjusted P‑value q‑value Michailidou 
(2017)
GWAS 
association

chr5:56,815,574–56,971,675 ENSG00000095015 MAP3K1 4.61E − 22 8.28E − 18 Yes

ENSG00000155545 MIER3 2.81E − 06 7.22E − 03 Yes

chr1:121,167,646–121,392,822 ENSG00000188610 FAM72B 1.32E − 15 1.19E − 11 Yes

ENSG00000171943 SRGAP2C 1.01E − 14 6.07E − 11 Yes

chr11:1,852,970–1,938,706 ENSG00000130595 TNNT3 6.17E − 08 2.77E − 04 Yes

ENSG00000130592 LSP1 1.31E − 07 4.70E − 04 Yes

chr10:121,478,334–121,598,458 ENSG00000066468 FGFR2 9.48E − 07 2.84E − 03 Yes

chr12:49,636,499–49,708,165 ENSG00000161791 FMNL3 6.11E − 06 1.37E − 02 No

chr19:43,766,533–43,901,385 ENSG00000104783 KCNN4 1.12E − 05 2.03E − 02 Yes

ENSG00000159871 LYPD5 1.39E − 05 2.03E − 02 Yes

ENSG00000176222 ZNF404 2.23E − 05 2.86E − 02 Yes

chr4:53,377,839–54,295,272 ENSG00000282278 AC058822.1 1.47E − 05 2.03E − 02 No

chr4:83,459,517–83,523,348 ENSG00000163322 ABRAXAS1 1.40E − 05 2.03E − 02 Yes

chr6:26,457,904–26,476,621 ENSG00000112763 BTN2A1 1.26E − 05 2.03E − 02 Yes
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in the development of other cancer types: SRGAP2C, 
MAP3K1, FGFR2, LSP1, and FMNL3.

In addition, the gene ABRAXAS1 codes for a subunit 
of the BRCA1-A complex [31]. This protein complex 
plays an important role in DNA damage repair and 

mutations in the BRCA1 gene predispose to increased 
risks of cancer [32].

In summary, we found support for aggregated gene 
associations coinciding with prior causal evidence in 
breast cancer for two of the nine associated genes and 

Fig. 2 Regional Plot the FMNL3 Gene on Chromosome 12. Regional plots for the breast cancer association of FMNL3 at 12q13.12. A Depiction 
of coding regions of all coding genes (data retrieved from Ensembl biomart hg38) within the chromosomal region with FMNL3 highlighted in 
blue. B Variants included in the aggregation test, plotted according to their chromosomal position and analysis weight. Highlighted in blue are 
variants exclusively present in the analysis of samples of diverse ancestry. C Single‑marker association results based on the same samples [10], with 
blue solid line denoting P‑value for meta‑analysis of all cohorts for gene of interest (P = 1.24 ×  10−5) in this study and blue dashed line denoting 
unadjusted P‑value for all‑European meta‑analysis (P = 6.11 ×  10−6)
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in any cancer for five of them. Among the four asso-
ciated genes without or very limited prior evidence in 
cancer pathophysiology is the single-gene locus span-
ning gene ABRAXAS1—a promising candidate gene for 
further follow-up owing to its close interactions with 
protein BRCA1 and its role in DNA damage repair 
[33].

Including ancestrally diverse samples finds additional gene 
associations
We furthermore tested gene-based associations in the 
African (n = 5784), Asian (n = 15,321), and Latin Ameri-
can and Hispanic (n = 2551) ancestry cohorts. There were 
no significant associations after FDR multiple testing 
correction. We considered suggestive associations with 
unadjusted, or in case of the Latin American and His-
panic cohort genetic control corrected, P-values below 
1 ×  10−4. While no suggestive associations were found in 
the Latin American and Hispanic cohort, four and five 
gene associations could be identified in the African and 
Asian cohort, respectively (Additional file 1: Table S7 and 
Table S8). This included a suggestive association of gene 
CBLB (unadjusted P-value: 2.11 ×  10−5, Additional file 1: 
Figure S5) in the African cohort. The E3 Ubiquitin Ligase 
Cbl-b, coded by oncogene CBLB, has been reported to 
affect cancer development and progression [34] and has 
been proposed as a clinical biomarker in breast cancer 

[35]. No variants located in the coding region of CBLB 
(plus 100 kb flanking region) were found to be associated 
in the 2017 large-scale GWAS [10]. None of the variants 
at this locus have been previously linked to any breast 
cancer phenotype based on the GWAS Catalog. Thus, 
the inclusion of diverse ancestry samples shows promise 
for the identification of new suggestive associations for a 
plausible candidate gene.

In a second meta-analysis, all 15 sample cohorts, 
including European ancestry cohorts and cohorts of 
Asian, African, or Latin American and Hispanic ancestry, 
were combined (Additional file 1: Table S6). This analy-
sis identified an additional association of gene ESR1 (FDR 
adjusted P-value in all cohort meta-analysis: 0.0269; 
Additional file 1: figure S4). The gene ESR1 codes for the 
estrogen receptor alpha protein and genetic variations in 
this gene have been reported to be associated with breast 
cancer [10, 36] and are well described in breast cancer 
etiology [37] impacting cancer progression [38], treat-
ment success [39], and long term disease outcomes [40].

Discussion
We report the results of a gene-based association analy-
sis in the BCAC resource. Adopting a recently proposed 
aggregation method that combines variants in coding and 
regulatory regions, we were able to replicate and extend 
previously reported findings. This aggregation method 

Table 2 Support for a Role in Cancer for the 14 Associated Genes. Prior supportive evidence for genes associated with breast cancer in 
the aggregation test was based on presence of pathogenic cancer mutations in those, based on ClinVar and curated genetic reference 
database Genetics Home Reference and aggregation database Malacards. In addition, hit genes were queried in the COSMIC Cancer 
Gene Census database

Gene AC058822.1 was not present in the queried databases
a ABRAXAS1 was additionally queried using the alias FAM175A

Causal evidence in breast cancer Causal evidence in any cancer

Locus (hg38) Gene ClinVar Genetics 
Home
Reference

Malacards
Score > 1

ClinVar Genetics 
Home
Reference

Malacards
Score > 1

Cancer Gene 
Census
[TIER1;TIER2;NO]

chr1:121,167,646–121,392,822 FAM72B NO NO NO NO NO NO NO

SRGAP2C NO NO NO NO NO YES NO

chr4:53,377,839–54,295,272 AC058822.1 NA NA NA NA NA NA NA

chr4:83,459,517–83,523,348 ABRAXAS1a NO NO NO NO NO NO NO

chr5:56,815,574–56,971,675 MAP3K1 NO YES YES YES NO YES TIER1

MIER3 NO NO NO NO NO NO NO

chr6:26,457,904–26,476,621 BTN2A1 NO NO NO NO NO NO NO

chr10:121,478,334–121,598,458 FGFR2 NO YES YES YES YES YES TIER1

chr11:1,852,970–1,938,706 TNNT3 NO NO NO NO NO NO NO

LSP1 NO NO NO NO NO YES NO

chr12:49,636,499–49,708,165 FMNL3 NO NO NO NO NO YES NO

chr19:43,766,533–43,901,385 KCNN4 NO NO NO NO NO NO NO

LYPD5 NO NO NO NO NO NO NO

ZNF404 NO NO NO NO NO NO NO
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helps identify target genes of previously reported single-
marker associations and uncovers additional associations 
that were missed by other methods.

We found 14 genes located in nine loci to be signifi-
cantly associated with breast cancer risk in samples of 
European ancestry. Variants near seven of these loci have 
previously been implicated in breast cancer development 
based on the 2017 GWAS by Michailidou et al. [10] and 
we were able to link those single-marker associations to 
putative target genes. We found independent evidence 
for a role in breast cancer development for five of the 
genes. Two of them, MAP3K1 and FGFR2, are long-
established risk genes for breast cancer mediated by both 
germline and somatic mutations [41, 42]. MAP kinase 
MEKK1, coded by MAP3K1, has been reported to pro-
mote cancer cell migration by contributing to an accom-
modating breast tumor microenvironment [43, 44], 
while FGFR2 has been identified as a viable drug target 
in breast cancer [45]. Additionally, the genes SRGAP2C, 
LSP1, and FMNL3 have been implicated in the etiology 
of other types of cancer. Although there is currently no 
functional evidence to substantiate the role of these three 
genes in breast cancer, sharing of genetic risk factors 
between different cancers is prevalent [46]. Jiang et  al. 
report a genetic correlation of 0.24, 0.18, and 0.15 for 
breast cancer with ovarian, lung, and colorectal cancer, 
respectively [2].

As a further plausible target gene, we have identi-
fied ABRAXAS1, which codes for a subunit of the 
BRCA1 DNA repair protein complex. Differential allelic 
expression in the genomic region 4q21, in which gene 
ABRAXAS1 is located, has been previously reported to 
be associated with breast cancer susceptibility [47]. Inter-
estingly, a recent study using burden testing for rare, 
protein-truncating or pathogenic variants in ABRAXAS1 
based on sequencing data from 60,000 patients and 
53,000 controls from the BCAC cohort did not find a sig-
nificant disease association, with the odds ratio reported 
as 0.98 (0.50–1.94) [12]. In contrast, our approach focus-
ing on low-frequency coding and regulatory variants 
identified a significant association of this gene with breast 
cancer risk. This suggests that our method enables gene 
discoveries that are missed by other approaches because 
the local genetic architecture of genes affecting breast 
cancer susceptibility varies between ancestry groups.

Beyond the identification of putative target genes in 
loci that have been previously found to harbor disease-
associated variants, we report here two new disease asso-
ciations for genes FMNL3 and AC058822.1. FMNL3 is a 
member of the diaphanous-related formin family, which 
represents a family of highly conserved cytoskeletal 
regulatory proteins [48]. FMNL3 expression is reported 
to promote migration and invasion of cancer cells and 

predicts clinical outcome in different solid cancers such 
as colorectal carcinoma [28, 49], squamous cell carci-
noma of the tongue [30], and melanoma [50]. No markers 
in the proximity of this gene were found to be associ-
ated with breast cancer in the 2017 GWAS in the same 
dataset.

Features of the method that may facilitate discoveries 
beyond those identified by other approaches include (i) a 
reduction of multiple testing burden, (ii) boosting signals 
by aggregating over all genetic regions affecting individ-
ual genes expression and function, (iii) inclusion of low-
frequency variants often underpowered in other studies, 
and (iv) ability to synthesize evidence for genetic risk 
factors in different ancestries regardless of differences in 
non-disease-associated variational background.

The inclusion of samples of non-European ancestry in 
genetic studies can advance our understanding of genetic 
disease landscapes [8]. However, differences between 
populations in terms of allele frequencies and linkage dis-
equilibrium can lead to heterogeneity and false positive 
associations in single-marker association analyses. Addi-
tionally, different causal variants may be present in differ-
ent ancestral groups [51] which can be driven by ancestry 
differences in allele frequencies. Aggregation methods 
offer a solution because they can accommodate multiple 
causal variants at a locus. A meta-analysis including all 
cohorts in this study was able to identify an additional 
association for ESR1, which was not detected in a Euro-
pean ancestry only analysis. Ancestry-related differences 
in disease-associated variants and minor allele frequen-
cies in the ESR1 locus (6q25 region) have been previously 
reported [52, 53]. This ESR1 gene is coding for the estro-
gen receptor alpha monomer, an established risk factor 
and promising clinical biomarker in breast cancer patho-
physiology [37, 54, 55].

The comparably small sample size of cohorts of non-
European ancestry is a limitation of our study. Although 
no gene reached FDR-corrected significance in these 
analyses, nine genes were associated at suggestive thresh-
olds, including biologically plausible candidate gene 
CBLB. This gene codes for the E3 Ubiquitin Ligase Cbl-b, 
which is a confirmed protagonist in cancer development 
and progression [56, 57]. There is recently mounting evi-
dence that CBLB expression may be useful as a prognos-
tic factor in breast cancer [35, 58, 59].

We note the following limitations for the adopted 
method in this study. First, no effect sizes or effect direc-
tions are derived. Second, it is not clear how statistical 
power for identification of associations is affected by 
gene length, mutational constrictions, number of tran-
scripts, and amount of prior evidence for regulatory 
elements. Future analyses could deliver insights in this 
regard. Third, we were not always able to narrow down 
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associations to a single target gene in loci due to overlap-
ping genetic features. This limitation is affected by the 
LD structure in a specific region and the amount of prior 
information available in form of eQTL data and regions 
of overlapping transcripts. Fourth, although we are able 
to find plausible target genes applying this method to 
samples of diverse ancestry, there is potential for fur-
ther optimisation. Regulatory features for genes have 
been identified using GTEx data, which predominantly 
is derived from European ancestry  samples. Addition-
ally, variants are weighted using Phred-scaled EigenPC 
pathogenicity scores [21]. These scores are derived using 
unsupervised learning on a labeled training dataset pre-
dominantly based on samples of European descent. Fifth, 
the current implementation of the method is compu-
tationally demanding but nonetheless able to analyze 
large sample sets (here over 140,000 samples). Sixth, our 
analysis did not consider different transcripts of genes so 
our findings are limited to the assigned major transcript. 
And lastly, the optimal aggregate methods depend on the 
genetic architecture at a given locus. We used SKAT-O 
a unified test to capture a range of different architec-
tures. However, the choice of method may impact on the 
results.

Conclusions
Our findings show that usage of extended gene aggrega-
tion methods covering coding and regulatory regions in 
addition to standard single-marker tests (i.e., GWAS) 
have the potential to discover novel associations in 
available datasets. This study helps uncover the role of 
low-frequency genetic variation in breast cancer sus-
ceptibility and empowers gene discovery in ancestrally 
diverse cohorts.
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Availability of data and materials
Gene aggregation results for all genes and all analyses, as well as code used 
in the analysis for this manuscript, are made available in the following github 
repository: https:// github. com/ stef‑ muell er/ BCAC_ genot ype_ aggre gation_ 
analy sis [60].
Code for running mummy on genotypes available in public github repository 
here: https:// github. com/ stef‑ muell er/ mummy_ for_ genot ypes.
An implementation of MONSTER, adapted for analyzing large‑scale genotype 
data, is accessible on github: https:// github. com/ stef‑ muell er/ MONST ER.
Annotation sources used in this project are (1) ClinVar, https:// www. ncbi. 
nlm. nih. gov/ clinv ar/; (2) MalaCards, https:// www. malac ards. org/; (3) Genetics 
Home Reference, https:// medli neplus. gov/ genet ics/; (4) COSMIC Cancer Gene 
Census data, https:// cancer. sanger. ac. uk/ census.
Summary statistics of GWAS data for breast cancer are available through 
the BCAC website: http:// bcac. ccge. medsc hl. cam. ac. uk. The individual level 
datasets analyzed during the current study are not publicly available due to 
protection of participant privacy and confidentiality, and ownership of the 
contributing institutions, but may be made available in an anonymized form 
via the corresponding author on reasonable request and after approval of the 
involved institutions. To receive access to the data, a concept form must be 
submitted, which will then be reviewed by the BCAC Data Access Coordina‑
tion Committee (DACC); see http:// bcac. ccge. medsc hl. cam. ac. uk/ bcacd ata/. 
This work was carried out under the approved BCAC concept form #595.
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