Ecologists have traditionally focused on herbivore carcasses as study models in scavenging research. However, some observations of scavengers avoiding feeding on carnivore carrion suggest that different types of carrion may lead to differential pressures. Untested assumptions about carrion produced at different trophic levels could therefore lead ecologists to overlook important evolutionary processes and their ecological consequences. Our general goal was to investigate the use of mammalian carnivore carrion by vertebrate scavengers. In particular, we aimed to test the hypothesis that carnivore carcasses are avoided by other carnivores, especially at the intraspecific level, most likely to reduce exposure to parasitism. We take a three-pronged approach to study this principle by: (i) providing data from field experiments, (ii) carrying out evolutionary simulations of carnivore scavenging strategies under risks of parasitic infection, and (iii) conducting a literature-review to test two predictions regarding parasite life-history strategies. First, our field experiments showed that the mean number of species observed feeding at carcasses and the percentage of consumed carrion biomass were substantially higher at herbivore carcasses than at carnivore carcasses. This occurred even though the number of scavenger species visiting carcasses and the time needed by scavengers to detect carcasses were similar between both types of carcasses. In addition, we did not observe cannibalism. Second, our evolutionary simulations demonstrated that a risk of parasite transmission leads to the evolution of scavengers with generally low cannibalistic tendencies, and that the emergence of cannibalism-avoidance behaviour depends strongly on assumptions about parasite-based mortality rates. Third, our literature review indicated that parasite species potentially able to follow a carnivore-carnivore indirect cycle, as well as those transmitted via meat consumption, are rare in our study system. Our findings support the existence of a novel coevolutionary relation between carnivores and their parasites, and suggest that carnivore and herbivore carcasses play very different roles in food webs and ecosystems.