An extended abstract of this paper appears in Advances in Cryptology — EUROCRYPT 01, Lecture
Notes in Computer Science Vol. 2045, B. Pfitzmann ed., Springer-Verlag, 2001. This is the full version.

Identification Protocols Secure Against Reset Attacks

MIHIR BELLARE* MARC FIscHLINT SHAFI GOLDWASSER? SILVIO MIcALI®

April 28, 2000

Abstract

We provide identification protocols that are secure even when the adversary can reset the in-
ternal state and/or randomization source of the user identifying itself, and when executed in an
asynchronous environment like the Internet that gives the adversary concurrent access to instances
of the user. These protocols are suitable for use by devices (like smartcards) which when under
adversary control may not be able to reliably maintain their internal state between invocations.

Keywords: Identification, zero-knowledge, reset, concurrency, signatures, encryption, authentication.

*Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in part
by a 1996 Packard Foundation Fellowship in Science and Engineering.

fDept. of Mathematics (AG 7.2), Johann Wolfgang Goethe-University, Postfach 111932, 60054 Frankfurt/Main,
Germany. E-mail: marc@mi.informatik.uni-frankfurt.de URL: www.mi.informatik.uni-frankfurt.de.

FMIT Laboratory for Computer Science, 545 Technology Square, Cambridge MA 02139, USA. E-Mail: shafi@
theory.lcs.mit.edu.

SMIT Laboratory for Computer Science, 545 Technology Square, Cambridge MA 02139, USA.

Contents

1 Introduction
1.1 The power of reset attacks
1.2 Notions of security
1.3 Four paradigms for identification secure against reset attack

2 Definitions

3 CRl-secure Identification protocols
3.1 A signature based protocol
3.2 An encryption based protocol
3.3 An identification based protocolo
3.4 A zero-knowledge based protocol oL

References
A Remarks about the notions of security

B Primitives used and their security
B.1 Stateless digital signature schemes oo
B.2 CCA2-secure Encryption schemes L oo
B.3 Pseudorandom functions Lo Lo
B.4 Trapdoor commitments L e

C CR2-secure Identification protocols
C.1 A signature based protocol
C.2 An encryption based protocol
C.3 An identification based protocol

D Proofs
D.1 Proof of Theorem 3.1 e
D.2 Proof of Theorem 3.4
D.3 Proof of Theorem 3.6 e

= W W

(=)

11
11
13
14
16

17

19

19
20
21
22
23

24
24
26
27

1 Introduction

An identification protocol enables one entity to identify itself to another as the legitimate owner of
some key. This problem has been considered in a variety of settings. Here we are interested in an
asymmetric setting. The entity identifying itself is typically called the prover, while the entity to
which the prover is identifying itself is called the verifier. The prover holds a secret key sk whose
corresponding public key pk is assumed to be held by the verifier.

The adversary’s goal is to impersonate the prover, meaning to get the verifier to accept it as
the owner of the public key pk. Towards this goal, it is allowed various types of attacks on the
prover. In the model of smartcard based identification considered by [18], the adversary may play the
role of verifier and interact with the prover, trying to learn something about sk, before making its
impersonation attempt. In the model of “Internet” based identification considered by [9, 3, 8], the
adversary is allowed to interact concurrently with many different prover “instances” as well as with the
verifier. Formal notions of security corresponding to these settings have been provided in the works
in question, and there are many protocol solutions for them in the literature.

In this work we consider a novel attack capability for the adversary. We allow it, while interacting
with the prover, to reset the prover’s internal state. That is, it can “backup” the prover, maintaining
the prover’s coins, and continue its interaction with the prover. In order to allow the adversary
to get the maximum possible benefit from this new capability, we also allow it to have concurrent
access to different prover instances. Thus, it can interact with different prover instances and reset
each of them at will towards its goal of impersonating the prover. The question of the security of
identification protocols under reset attacks was raised by Canetti, Goldreich, Goldwasser and Micali
[11], who considered the same issue in the context of zero-knowledge proofs.

1.1 The power of reset attacks

AN EXAMPLE. Let us illustrate the power of reset attacks with an example. A popular paradigm
for smartcard based identification is to use a proof of knowledge [18]. The prover’s public key is an
instance of a hard NP language L, and the secret key is a witness to the membership of the public
key in L. The protocol enables the prover to prove that it “knows” sk. A protocol that is a proof
of knowledge for a hard problem, and also has an appropriate zero-knowledge type property such as
being witness hiding [19], is a secure identification protocol in the smartcard model [18].

A simple instance is the zero-knowledge proof of quadratic residuosity of [22]. The prover’s public
key consists of a composite integer N and a quadratic residue u € Z3;. The corresponding secret key
is a square root s € Zj of u. The prover proves that it “knows” a square root of u, as follows. It
begins the protocol by picking a random r € Z5; and sending y = r2 mod N to the verifier. The latter
responds with a random challenge bit ¢. The prover replies with a = rs® mod N, meaning it returns r
if c = 0 and 7s mod N if ¢ = 1. The verifier checks that a?> = yu® mod N. (This atomic protocol has
an error probability of 1/2, which can be lowered by sequential repetition. The Fiat-Shamir protocol
[20] can be viewed as a parallelized variant of this protocol.)

Now suppose the adversary is able to mount reset attacks on the prover. It can run the prover to
get y, feed it challenge 0, and get back a = r. Now, it backs the prover up to the step just after it
returned y, and feeds it challenge 1 to get answer a’ = rs. From a and a’ it is easily able to extract
the prover’s secret key s. Thus, this protocol is not secure under reset attacks.

Generalizing from the example, we see that in fact, all proof of knowledge based identification
protocols can broken in the same way. Indeed, in a proof of knowledge, the prover is defined to “know
a secret” exactly when this secret can be extracted by a polynomial time algorithm (the “extractor”)
which has oracle access to the prover and is allowed to reset the latter [18, 6]. An attacker allowed a
reset attack can simply run the extractor, with the same result, namely it gets the secret. So the bulk

of efficient smartcard based identification protocols in the literature are insecure under reset attacks.

MOUNTING RESET ATTACKS. Resetting or restoring the computational state of a device is particularly
simple in the case the device consists of a smartcard which the enemy can capture and experiment
with. If the card is manufactured with secure hardware, the enemy may not be able to read its secret
content, but it could disconnect its battery so as to restore the card’s secret internal content to some
initial state, and then re-insert the battery and use it with that state a number of times. If the
smart card implements a proof of knowledge prover for ID purposes, then such an active enemy may
impersonate the prover later on.

Other scenarios in which such an attack can be realized is if an enemy is able to force a crash on
the device executing the prover algorithm, in order to force it to resume computation after the crash
in an older “computational state”, thereby forcing it to essentially reset itself.

CAN WE USE RESETTABLE ZERO-KNOWLEDGE? Zero-knowledge proofs of membership secure under
reset attack do exist [11], but for reasons similar to those illustrated above, are not proofs of knowledge.
Accordingly, they cannot be used for identification under a proof of knowledge paradigm. One of the
solution paradigms we illustrate later however will show how proofs of membership, rather than proofs
of knowledge, can be used for identification.

1.2 Notions of security

Towards the goal of proving identification protocols secure against reset attacks, we first discuss the
notions of security we define and use.

We distinguish between two types of resettable attacks CR1 (Concurrent-Reset-1) and CR2 (Con-
current-Reset-2). In a CR1 attack, Vicky (the adversary) may interact concurrently, in the role of
verifier, with many instances of the prover Alice, resetting Alice to initial conditions and interleaving
executions, hoping to learn enough to be able to impersonate Alice in a future time. Later, Vicky will
try to impersonate Alice, trying to identify herself as Alice to Bob (the verifier).

In a CR2 attack, Vicky, while trying to impersonate Alice (i.e attempting to identify herself as
Alice to Bob the verifier), may interact concurrently, in the role of verifier, with many instances of the
prover Alice, resetting Alice to initial conditions and interleaving executions. Clearly, a CR1 attack is
a special case of a CR2 attack.

A definition of what it means for Vicky to win in the CR1 setting is straightforward: Vicky wins
if she can make the verifier Bob accept. In the CR2 setting Vicky can make the verifier accept by
simply being the woman-in-the-middle, passing messages back and forth between Bob and Alice. The
definitional issues are now much more complex because the woman-in-the-middle “attack” is not really
an attack and the definition must take this into account. We address these issues based on definitional
ideas from [9, 8], specifically by assigning session-ids to each completed execution of an ID protocol,
which the prover must generate and the verifier accept at the completion of the execution. For reasons
of brevity we do not discuss the CR2 setting much in this abstract, and refer the reader to the full
version of this paper [5].

We clarify that the novel feature of our work is the consideration of reset attacks for identification.
However our settings are defined in such a way that the traditional concurrent attacks as considered by
[9, 17] and others are incorporated, so that security against these attacks is achieved by our protocols.

1.3 Four paradigms for identification secure against reset attack

As we explained above, the standard proof of knowledge based paradigm fails to provide identification
in the resettable setting. In that light, it may not be clear how to even prove the existence of a solution
to the problem. Perhaps surprisingly however, not only can the existence of solutions be proven under
the minimal assumption of a one-way function, but even simple and efficient solutions can be designed.

This is done in part by returning to some earlier paradigms. Zero-knowledge proofs of knowledge
and identification are so strongly linked in contemporary cryptography that it is sometimes forgotten
that these in fact replaced earlier identification techniques largely due to the efficiency gains they
brought. In considering a new adversarial setting it is thus natural to first return to older paradigms
and see whether they can be “lifted” to the resettable setting. We propose in particular signature
and encryption based solutions for resettable identification and prove them secure in both the CR1
and the CR2 settings. We then present a general method for transforming identification protocols
secure in a concurrent but non-reset setting to ones secure in a reset setting. Finally we return to the
zero-knowledge ideas and provide a new paradigm based on zero-knowledge proofs of membership as
opposed to proofs of knowledge.

SIGNATURE BASED IDENTIFICATION. The basic idea of the signature based paradigm is for Alice
convinces Bob that she is Alice, by being “able to” sign random documents of Bob’s choice. This
is known (folklore) to yield a secure identification scheme in the serial non-reset setting of [18] as
long as the signature scheme is secure in the sense of [23]. It is also known to be secure in the
concurrent non-reset setting [3]. But it fails in general to be secure in the resettable setting because
an adversary can obtain signatures of different messages under the same prover coins. What we show
is that the paradigm yields secure solutions in the resettable setting if certain special kinds of signature
schemes are used. (The signing algorithm should be deterministic and stateless.) In the CR1 setting
the basic protocol using such signature schemes suffices. The CR2 setting is more complex and we
need to modify the protocol to include “challenges” sent by the prover. Since signature schemes with
the desired properties exist (and even efficient ones exist) we obtain resettable identification schemes
proven secure under minimal assumptions for both the CR1 and the CR2 settings, and also obtain
some efficient specific protocols.

ENCRYPTION BASED IDENTIFICATION. In the encryption based paradigm, Alice convinces Bob she is
Alice, by being “able to” decrypt ciphertexts which Bob created. While the basic idea goes back to
symmetric authentication techniques of the seventies, modern treatments of this paradigm appeared
more recently in [15, 3, 17] but did not consider reset attacks. We show that under an appropriate
condition on the encryption scheme —namely that it be secure against chosen-ciphertext attacks— a
resettable identification protocol can be obtained. As before the simple solution for the CR1 setting
needs to be modified before it will work in the CR2 setting.

TRANSFORMING STANDARD PROTOCOLS. Although Fiat-Shamir like identification protocols are not
secure in the context of reset attacks, with our third paradigm we show how to turn practical identi-
fication schemes into secure ones in the CR1 and CR2 settings. The solution relies on the techniques
introduced in [11] and utilizes pseudorandom functions and trapdoor commitments. It applies to most
of the popular identification schemes, like Fiat-Shamir [20], Okamoto-Schnorr [31, 28] or Okamoto-
Guillou-Quisquater [25, 28].

ZK PROOF OF MEMBERSHIP BASED IDENTIFICATION. In the zero-knowledge proofs of membership
paradigm, Alice convinces Bob she is Alice, by being “able to” prove membership in a hard language
L, rather than by proving she has a witness for language L. She does so by employing a resettable
zero-knowledge proof of language membership for L as defined in [11] . Both Alice and Bob will need
to have a public-key to enable the protocol. Alice’s public-key defines who she is, and Bob’s public-key
enables him to verify her identity in a secure way. We adopt the general protocol for membership in
NP languages of [11] for the purpose of identification. The identification protocols are constant round.
What makes this work is the fact that the protocol for language membership (z € L) being zero-
knowledge implies “learning nothing” about z in a very strong sense — a verifier cannot subsequently
convince anyone else that x € L with non-negligible probability. We note that while we can make
this approach work using resettable zero-knowledge proofs, it does not seem to work using resettable

witness indistinguishable proofs for ID protocols.

PERSPECTIVE. Various parts of the literature have motivated the study of zero-knowledge protocols
secure against strong attacks such as concurrent or reset in part by the perceived need for such tools
for the purpose of applications such as identification in similar attack settings. While the tools might
be sufficient for identification, they are not necessary. Our results demonstrate that identification is
much easier than zero-knowledge and the latter is usually an overkill for the former.

2 Definitions

The adversary model here, allowing reset attacks in a concurrent execution setting, is the strongest one
for identification considered to date. It is convenient to define two versions of the model: Concurrent-
Reset-1 (CR1) and Concurrent-Reset-2 (CR2). While both models allow concurrent reset attacks on
provers, in CR1 —which models smartcard based identification and extends the setting of [18]— the
adversary is allowed access to provers only prior to its attempt to convince the verifier to accept, while
in CR2 —which models network or “Internet” based identification and extends the setting of [9]—
the adversary maintains access to the provers even while trying to convince the verifier to accept.
The split enables us to take an incremental approach both to the definitions and to the design of
protocols, considering first the simpler CR1 setting and then showing how to lift the ideas to the more
complex CR2 setting. In this section we present definitions for the CR1 case obtained by adapting and
extending [18], and definitions for the CR2 case based on ideas of |9, 8].

NOTATION.If A(-,-,...) is a randomized algorithm then y «— A(x1,z9,...; R) means y is assigned the
unique output of the algorithm on inputs x1, x9, ... and coins R, while y < A(z1,z9,...) is shorthand
for first picking R at random (from the set of all strings of some appropriate length) and then setting
y — A(x1,x9,...;R). If z1,29,... are strings then zq|xz|| - -+ denotes an encoding under which the
constituent strings are uniquely recoverable. It is assumed any string x can be uniquely parsed as an
encoding of some sequence of strings. The empty string is denoted &.

SYNTAX OF IDENTIFICATION PROTOCOLS.An identification protocol proceeds as depicted in Figure 1.
The prover has a secret key sk whose matching public key pk is held by the verifier. (In practice the
prover might provide its public key, and the certificate of this public key, as part of the protocol, but
this is better slipped under the rug in the model.) Each party computes its next message as a function
of its keys, coins and the current conversation prefix. The number of moves m(k) is odd so that the
first and last moves belong to the prover. (An identification protocol is initiated by the prover who at
the very least must provide a request to be identified.) At the end of the protocol the verifier outputs a
decision to either accept or reject. Each party may also output a session id. (Sessions ids are relevant
in the CR2 setting but can be ignored for the CR1 setting.) A particular protocol is described by a
(single) protocol description function ZD which specifies how all associated processes —key generation,
message computation, session id or decision computation— are implemented. (We say that ZD is for
the CR1 setting if sidp = sidy, = €, meaning no session ids are generated.) The second part of Figure 1
shows how it works: the first argument to ZD is a keyword —one of keygen, prvmsg, vfmsg, prvsid,
vfend— which invokes the subroutine responsible for that function on the other arguments.

COMPLETENESS. Naturally, a correct execution of the protocol (meaning one in the absence of an
adversary) should lead the verifier to accept. To formalize this “completeness” requirement we consider
an adversary-free execution of the protocol ZD which proceeds as described in the following experiment:

(pk, sk) « ID(keygen, k) ; Choose tapes Rp, Ry at random
MSG; < ID(prvmsg, sk,e; Rp)
For j=1to |m(k)/2] do

MSGaj ID(vfmsg,pk, MSGy H te HMSGQJ‘,;L; RV)

Prover Verifier

pk,sk ; Coins: Rp pk ; Coins: Ry
MSG1
MSGo
MSGop(k)—1
MSG (k)
. Output: decision € {accept, reject}
Output: sidp and: sidy

(pk, sk) « ID(keygen, k) — Randomized process to generate a public key pk and matching secret key
sk

MSGaojt1 «— ZD(prvmsg, sk, MSG|| - --MSGgj; Rp) — (1 < 2j 4+ 1 < m(k)) Next prover message as a
function of secret key, conversation prefix and coins Rp

MSGg; < ID(vfmsg, pk,MSG1|| - - [|MSG2j_1; Ry) — (2 < 2§ < m(k) — 1) Next verifier message as a
function of public key, conversation prefix and coins Ry

sidp < ZD(prvsid, sk, MSG1|| - - - [[MSGy,(x); Rp) — Prover’s session id as a function of secret key, full
conversation and coins

sidy ||decision « ZD(vfend, pk, MSG1|| - - - [[MSGyy(x); Ry) — Verifier session id and decision (accept or
reject) as a function of public key, full conversation and coins

Figure 1: The prover sends the first and last messages in an m(k)-move identification protocol at
the end of which the verifier outputs a decision and each party optionally outputs a session id. The
protocol description function ZD specifies all processes associated to the protocol.

MSGajt1 < ZD(prvmsg, sk, MSG1]| - - - ||[MSG2;; Rp)
EndFor
sidp < ZD(prvsid, sk, MSG1|| - - - [MSGyy(x); Rp)
sidy ||decision «— ZD(vfend, pk, MSG1|| - - - [[MSGy,(1); Rv)

The completeness condition is that, in the above experiment, the probability that sidp = sidy and
decision = accept is 1. (The probability is over the coin tosses of ZD(keygen, k) and the random choices
of Rp, Ry.) As always, the requirement can be relaxed to only ask for a probability close to one.

EXPERIMENTS AND SETTINGS.Fix an identification protocol description function ZD and an adversary
I. Associated to them is Experimentizdbf?(k), depicted in Figure 2, which is used to define the
security of ZD in the CR1 setting. (In this context it is understood that ZD is for the CR1 setting,
meaning does not produce session ids.) Experimentizdbcj(k), depicted in Figure 3, is used to define
the security of ZD in the CR2 setting.The experiment gives the adversary appropriate access to prover
instance oracles Prover!, Prover?, ... and a single verifier oracle, let it query these subject to certain
restrictions imposed by the experiment, and then determine whether it “wins”. The interface to the
prover instance oracles and the verifier oracle (which, in the experiment, are implicit, never appearing
by name) is via oracle queries; the experiment enumerates the types of queries and shows how answers
are provided to them.

Eachexperiment begins with some initializations which include choosing of the keys. Then the
adversary is invoked on input the public key. A WakeNewProver query activates a new prover instance
Prover” by picking a random tape R, for it. (A random tape for a prover instance is chosen exactly

once and all messages of this prover instance are then computed with respect to this tape. The

ExperimentiId;rIl(k) — Execution of protocol ZD with adversary I and security parameter k in the

CR1 setting

Initialization:

(1) (pk,sk) < ZD(keygen, k) J Pick keys via randomized key generation algorithm //

(2) Choose tape Ry for verifier at random ; Cy «— 0 / Coins and message counter for verifier //
(3) p« 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

e When I makes query WakeNewProver // Activate a new prover instance //
(1) p<—p+1; Pick a tape R, at random ; Return p

e When I makes query Send(prvmsg, i, MSG1|| - - - [[MSGg;) with 0 < 2j <m(k) and 1 <i <p
(1) If Cy # 0then Return 1 // Interaction with prover instance allowed only before interaction
with verifier begins //
(2) MSGgjq1 < ID(prvmsg, sk, MSG1|| - - - ||[MSCa;; R;)
(3) Return MSGgjt1

e When I makes query Send(vfmsg, MSG1]|| - - - [|[MSGg;_1) with 1 < 2j —1 < m(k)
(1) Cy — Cy+2
(2) If 2j < Cy then Return L / Not allowed to reset the verifier //
(3) If 2j—1 < m(k)—1 then MSGg; < ID(vfmsg, pk, MSG1]| - - |[MSGg;_1; Ry); Return MSGa;
(4) 1If 2j—1=m(k) then decision «— ZD(vfend, pk, MSG1]| - - - [|[MSG2;; Ry)
(5) Return decision

Did I win? When I has terminated set WIN; = true if decision = accept.

Figure 2: Experiment describing execution of identification protocol ZD with adversary I and security
parameter k in the CR1 setting.

tape of a specific prover instance cannot be changed, or “reset”, once chosen.) A Send(prvmsg, i, x)
query —viewed as sent to prover instance Prover’— results in the adversary being returned the next
prover message computed as ZD(prvmsg, sk, z; R;). (It is assumed that z = MSGq]|-- - ||[MSGy; is a
valid conversation prefir, meaning contains an even number of messages 2j < m(k), else the query
is not valid.) Resetting is captured by allowing arbitrary (valid) conversation prefixes to be queried.
(For example the adversary might try MsGi|[MSGg for many different values of MSGg, corresponding
to successively resetting the prover instance to the point where it receives the second protocol move.)
Concurrency is captured by the fact that any activated prover instances can be queried.

A Send(vfmsg,) query is used to invoke the verifier on a conversation prefix x and results in
the adversary being returned either the next verifier message computed as ZD(vfmsg, pk, x; Ry) —
this when the verifier still has a move to make— or the decision computed as ZD(vfend, pk, x; Ry)
—this when x corresponds to a full conversation. (Here Ry was chosen at random in the experiment
initialization step. It is assumed that © = MSG1|| - - - ||[MSGg;_; is a valid conversation prefix, meaning
contains an odd number of messages 1 < 25 — 1 < m(k), else the query is not valid.) Unlike a prover
instance, resetting the (single) verifier instance is not allowed. (Our signature and encryption based
protocols are actually secure even if verifier resets are allowed, but since the practical need to consider
this attack is not apparent, the definition excludes it.) This is enforced explicitly in the experiments
via the verifier message counter Cy .

We now come to the difference in the two settings:

Experimentil%frl (k) — Execution of protocol ZD with adversary I and security parameter k in the

CR2 setting

Initialization:

(1) (pk,sk) < ZD(keygen, k) J Pick keys via randomized key generation algorithm //

(2) Choose tape Ry for verifier at random ; Cy «— 0 / Coins and message counter for verifier //
(3) p« 0 // Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

e When I makes query WakeNewProver // Activate a new prover instance //
(1) p—p+1;SID, — 0; Pick a tape R, at random ; Return p

e When I makes query Send(prvmsg, i, MSG1|| - - - [[MSGg;) with 0 < 25 <m(k) and 1 <i <p
(1) MSGgjt1 < ID(prvmsg, sk, MSG1]| - - - [|[MSGa;; R;) ; § < MSGaj11
(2) If 2j+1=m(k) then
— sid <« ID(prvsid, sk, MSG1|| - - - |[MSGaj4+1; R;i) ; s « s]|sid

(3) Return s

e When I makes query Send(vfmsg, MSG1|| - - - [[MSGg;—1) with 1 <25 — 1 < m(k)
(1) Cy «—Cy+2
(2) If 2j < Cy then Return 1 / Not allowed to reset the verifier //
(3) If 2j—1 < m(k)—1 then MSGy; < ZD(vfmsg, pk, MSG1|| - - - |[MSG2j_1; Rv); Return MSGa;
(4) If 2j—1=m(k) then sidy||decision < ZD(vfend, pk, MSG]||- - - |[MSGa;; Rv) ;
Return sidy ||decision

Did I win? When I has terminated set WIN; = true if either of the following are true:
(1) decision = accept and sidy & SID; U --- U SID,,.
(2) There exist 1 < a < b < p with SID, NSIDy, # @

Figure 3: Experiment describing execution of identification protocol ZD with adversary I and security
parameter k in the CR2 setting.

CR1 setting: The adversary’s actions are divided into two phases. In the first phase it interacts
with the prover instances, not being allowed to interact with the verifier; in the second phase it is
denied access to the prover instances and tries to convince the verifier to accept. Experiment%ibcjl(k)

enforces this by returning L in reply to a Send(prvmsg, i, x) unless Cy = 0.

CR2 setting: The prover instances and the verifier instance are available simultaneously to the adver-
sary. In particular it can relay message back and forth between them.

WHAT’S A WIN? In the CR1 setting it is easy to say what it should mean for the adversary to
“win:” it should make the verifier instance accept. The parameter WIN; is set accordingly in
Experimentizdﬁﬁl(k). What it means for the adversary to “win” is less clear in the CR2 setting
because here there is one easy way for the adversary to make the verifier accept: play “man in the
middle” between the verifier and some prover instance, relaying messages back and forth between
them until the verifier accepts. Yet, it is clear that this is not really an attack; there is no harm in
the verifier accepting under these conditions since in fact it was actually talking to the prover. Rather
this example highlights the fact that the definitional issues of the second setting are significantly more
challenging than those of the first setting: how exactly do we say what it means for the adversary

to win? Luckily, however, this problem has already been solved. The first proposed definition, due
to Bellare and Rogaway [9], is based on the idea of “matching conversations” and corresponds to a
very stringent security requirement. Another possible definition is that of [8] which uses the idea of
“matching session ids.” (The idea goes back to Bellare, Petrank, Rackoff and Rogaway, 1996.) We
will use the latter definitional approach.

View a session id shared between a prover instance and the verifier as a “connection name,” enabling
the verifier to differentiate between different prover instances. It is not secret, and in particular will
be given to the adversary. (In setting one, even though there are many prover instances, a session id
is not necessary to differentiate them from the point of view of the verifier because only one prover
instance can interact with the verifier at any time.) In the absence of an adversary, the session ids
output by a prover instance and the verifier at the end of their interaction must be the same, but with
high probability no two different prover instances should have the same session id, since otherwise the
verifier cannot tell them apart. Victory for the adversary now will correspond to making the verifier
accept with a session id not held by any prover instance. (We also declare the adversary victorious if
it “confuses” the verifier by managing to make two different prover instances output the same session
id.) The parameter WIN; is set accordingly in Experimentizdbf}(k:). Session ids are public in the
sense that the adversary gets to see those created by any instances with which it interacts.

DEFINITION OF SECURITY. The experiments indicate under what conditions adversaries are declared
to “win.” The definition of the protocol is responsible for ensuring that both parties reject a received
conversation prefix if it is inconsistent with their coins. It is also assumed that the adversary never
repeats an oracle query. We can now provide definitions of security for protocol ZD.

Definition 2.1 [Security of an ID protocol in the CR1 setting] Let ZD be an identification
protocol description for the CR1 setting. Let I be an adversary (called an impersonator in this

context) and let k be the security parameter. The advantage of impersonator I is

Advizdbf}l(k) = Pr[WIN; = true]|
where the probability is with respect to Experimentifl{f}l (k). Protocol ZD is said to be polynomially-
secure in the CR1 setting if Advizd{)“l(') is negligible for any impersonator I of time-complexity poly-
nomial in k. |

We adopt the convention that the time-complexity t(k) of an adversary I is the execution time of
the entire experiment Experimentizdb‘f?l(k), including the time taken for initialization, computation
of replies to adversary oracle queries, and computation of WIN;. We also define the query-complexity
q(k) of I as the number of Send(prvmsg, -,) queries made by I in Experimentiflbffl(k). It is always
the case that q(k) < t(k) so an adversary of polynomial time-complexity has polynomial query-
complexity. These definitions and conventions can be ignored if polynomial-security is the only concern,
but simplify concrete security considerations to which we will pay some attention later.

A definition of security for the CR2 setting can be found in [5].

Definition 2.2 [Security of an ID protocol in the CR2 setting] Let ZD be an identification
protocol description. Let I be an adversary (called an impersonator in this context) and let k be the
security parameter. The advantage of impersonator I is

Advizdgf?(k:) = Pr[WIN; = true|

id-cr

where the probability is with respect to Experiment7y; (k). Protocol ZD is said to be polynomially-
secure in the CR2 setting if Advi$<*2(.) is negligible for any impersonator I of time-complexity poly-
nomial in k. |

We adopt the same conventions regarding time and query complexity as above.

10

Prover Verifier
pk,sk ; Coins: Rp =¢ pk ; Coins: Ry = CHy
start
CHy

S1G «— DS(sign, sk, CHy)
SIG

_—

Output: decision = DS(vf, pk, CHy, SIG)

ID(keygen, k) = DS(keygen, k) — ZID has same key generation process as DS

ID(prvmsg, sk, x; Rp) where |Rp| =0 ID(prvsid, sk, z; Rp) where |[Rp| =0
— Parse z as MSGq|| - - - [|[MSG; ~ Return ¢

—If | ¢{0,2} then Return L

— If | =0 then Return start

— If |MSGa| # vel(k) then Return L

—~ CHy « MSGs ; SIG « DS (sign, sk, CHy)
— Return SIG

ID(vfmsg, pk, z; Ry) where |Ry | = vel(k) | ZD(vfend, pk, x; Ry') where |Ry| = vcl(k)

— Parse z as MSG1|| - - - ||[MsgG, — Parse x as MSGq|| - - - [[MsG,

—If [#1 then Return L — If | # 3 or MSGs # Ry then Return L
— CHy < Ry — CHy «— MSGg2 ; SIG < MSGj3

— Return CHy — decision «+ DS(vf, pk, CHy, SIG)

— Return ¢||decision

Figure 4: Reset-secure identification protocol ZD for the CR1 setting based on a deterministic, stateless
digital signature scheme DS: Schematic followed by full protocol description.

MORE. Appendix A contains more information about the notions including comparison with previous
definitions in the literature.

3 CRl-secure Identification protocols

Four paradigms are illustrated: signature based, encryption based, identification based, and zero-
knowledge based.

3.1 A signature based protocol

We assume knowledge of background in digital signatures as summarized in Appendix B.1.

SIGNATURE BASED IDENTIFICATION. A natural identification protocol is for the verifier to issue a
random challenge CHy and the prover respond with a signature of CHy computed under its secret key
sk. (Prefix the protocol with an initial start move by the prover to request start of an identification
process, and you have a three move protocol.) This simple protocol can be proven secure in the
serial, non-resettable (ie. standard smartcard) setting of [18] as long as the signature scheme meets
the notion of security of [23] provided in Definition B.1. (This result seems to be folklore.) The same
protocol has also been proven to provide authentication in the concurrent, non-resettable (ie. standard
network) setting [3]. (The intuition in both cases is that the only thing an adversary can do with a
prover oracle is feed it challenge strings and obtain their signatures, and if the scheme is secure against
chosen-message attack this will not help the adversary forge a signature of a challenge issued by the
verifier unless it guesses the latter, and the probability of the last event can be made small by using

11

a long enough challenge.) This protocol is thus a natural candidate for identification in the resettable
setting.

However this protocol does not always provide security in the resettable setting. The intuition
described above breaks down because resetting allows an adversary to obtain the signatures of different
messages under the same set of coins. (It can activate a prover instance and then query it repeatedly
with different challenges, thereby obtaining their signatures with respect to a fixed set of coin tosses.)
As explained in Appendix B.1, this is not covered by the usual notion of a chosen-message attack used
to define security of signature schemes in [23]. And indeed, for many signature schemes it is possible
to forge the signature of a new message if one is able to obtain the signatures of several messages
under one set of coins. Similarly, if the signing algorithm is stateful, resetting allows an adversary to
make the prover release several signatures computed using one value of the state variable —effectively,
the prover does not get a chance to update its state is it expects to— again leading to the possibility
of forgery on a scheme secure in the standard sense.

The solution is simple: restrict the signature scheme to be stateless and deterministic. In Appendix B.1we
explain how signatures schemes can be imbued with these attributes so that stateless, deterministic
signature schemes are available.

PrROTOCOL AND SECURITY. Let DS be a deterministic, stateless signature scheme. Figure 4 illus-
trates the flows of the associated identification protocol ZDand then provides the protocol description.
(The latter includes several checks omitted in the picture but important for security against resets.)A
parameter of the protocol is the length vel(k) of the verifier’s random challenge. The prover is deter-
ministic and has random tape ¢ while the verifier’'s random tape is CHy. Refer to Definition 2.1 and
Definition B.1 for the meanings of terms used in the theorem below, and to Section D.1 for the proof.

Theorem 3.1 [Concrete security of the signature based ID scheme in the CR1 setting] Let
DS be a deterministic, stateless signature scheme, let vcl(-) be a polynomially-bounded function, and
let ZD be the associated identification scheme as per Figure 4. If I is an adversary of time-complexity
t(-) and query-complexity ¢(-) attacking ZD in the CR1 setting then there exists a forger F' attacking
DS such that

q(k)
uel(k) * (1)

AQviET (k) < Adviss p(k) +

Furthermore F' has time-complexity t(k) and makes at most ¢(k) signing queries in its chosen-message
attack on DS. 1

This immediately implies the following:

Corollary 3.2 [Polynomial-security of the signature based ID scheme in the CR1 setting]
Let DS be a deterministic, stateless signature scheme, let vel(k) = k, and let ZD be the associated
identification scheme as per Figure 4. If DS is polynomially-secure then ZD is polynomially-secure in
the CR1 setting. I

Corollary 3.2 together with Proposition B.2 imply:

Corollary 3.3 [Existence of an ID scheme polynomially-secure in the CR1 setting] Assume
there exists a one-way function. Then there exists an identification scheme that is polynomially-secure
in the CR1 setting.

This means that we can prove the existence of an identification protocol secure in the CR1 setting
under the minimal complexity assumption of a one-way function.

12

Prover Verifier

pk,sk ; Coins: Rp =¢ pk ; Coins: Ry = CHy || Re
start
cTXT « AE(enc, pk, CHy; R,)
CTXT
PTXT «— AE(dec, sk, CTXT)
PTXT

If CHy = PTXT
then decision < accept
else decision « reject

Output: decision

ID(keygen, k) = AE(keygen, k) — ID has same key generation process as AE

ID(prvmsg, sk, x; Rp) where Rp = ¢ ID(prvsid, sk, z; Rp) where Rp =€
— Parse x as MSG1|| - - - ||Msgq, — Return ¢

—If | ¢{0,2} then Return L

—If [=0 then Return start

— CTXT +— MSGg ; PTXT «— AE(dec, sk, CTXT)
— If |PTXT| # vel(k) then Return L

— Return PTXT

ID(vfmsg, pk, x; Ry) ID(vfend, pk,z; Ry)

— Parse Ry as CHy || R, with |cHy| = vel(k) | — Parse Ry as CHy||R. with |cHy | = vel(k)
— Parse x as MSG1|| - - - [|MSg, ~ Parse z as MSG1|| - - - ||MsG,

—~If [#1 then Return L — If [# 3 then Return L

— CTXT « A& (enc, pk, CHy; R,.) — PTXT « MSQ3 ; sid «— CHy

— Return CTXT — If PTXT = CHy

then decision « accept else decision « reject
— Return ¢|decision

Figure 5: Reset-secure identification protocol ZD for the CR1 setting based on a chosen-ciphertext
attack secure asymmetric encryption scheme AE: Schematic followed by full protocol description.

3.2 An encryption based protocol

ENCRYPTION BASED IDENTIFICATION. The idea is simple: the prover proves its identity by proving
its ability to decrypt a ciphertext sent by the verifier. This basic idea goes back to early work in
entity authentication where the encryption was usually symmetric (ie. private-key based). These
early protocols however had no supporting definitions or analysis. The first “modern” treatment
is that of [15] who considered the paradigm with regard to providing deniable authentication and
identified non-malleability under chosen-ciphertext attack —equivalently, indistinguishability under
chosen-ciphertext attack [4, 15]— as the security property required of the encryption scheme. Results
of [3, 17, 15] imply that the protocol is a secure identification scheme in the concurrent non-reset
setting, but reset attacks have not been considered before.

PROTOCOL AND SECURITY. Let AE be an asymmetric encryption scheme polynomially-secure against
chosen-ciphertext attack. Figure 5 illustrates the flows of the associated identification protocol ZD
and then provides the protocol description. A parameter of this protocol is the length wvcl(k) of the
verifier’s random challenge. The verifier sends the prover a ciphertext formed by encrypting a random
challenge, and the prover identifies itself by correctly decrypting this to send the verifier back the
challenge. The prover is deterministic, having random tape €. We make the coins R, used by the

13

Prover Verifier

pk = (pkcip; Pkrpe), sk = skcip pk
Coins: Rp =k Coins: Ry = CHy || R,
start
TDCOM «—
TDCOM
Rcip PR]—"(evaI, K, TDCOM)
COM <« CID(cmt, SkCID; RCID)
COM
CHy || R.

If 7DC(vf, pkrpc, TDCOM, CHy || R,) = accept
then RESP « CZD(resp, skorp, COMHCHv; RCID)

else RESP «+ |
RESP
sy

decision «— CID(vf, pkcip, COM| CHy ||RESP)
Output: decision

ID(keygen, k) = CID(keygen, k) and T DC(keygen, k)

Figure 6: Reset-secure identification protocol ZD for the CR1 setting based on an identification scheme
CID secure against non-resetting CR1 attacks

encryption algorithm explicit, so that the verifier’s random tape consists of the challenge —a random
string of length vcl(k) where vcl is a parameter of the protocol— and coins sufficient for one invocation
of the encryption algorithm. Refer to Definition 2.1 and Definition B.3 for the meanings of terms used
in the theorem below, and to Section D.2 for the proof.

Theorem 3.4 [Concrete security of the encryption based ID scheme in the CR1 setting]
Let AE be an asymmetric encryption scheme, let vel(-) a polynomially-bounded function, and let ZD
be the associated identification scheme as per Figure 5. If I is an adversary of time-complexity ¢(-) and
query-complexity ¢(-) attacking ZD in the CR1 setting then there exists an eavesdropper E attacking
AE such that

id- . 2q(k) +2

d-crl 1

AQVERT (1) < AdVIER(R) + =500 2)

Furthermore E has time-complexity ¢(k), makes one query to its lr-encryption oracle, and at most
q(k) queries to its decryption oracle. |

This immediately implies the following;:

Corollary 3.5 [Polynomial-security of the encryption based ID scheme in the CR1 setting]
Let AE be an asymmetric encryption scheme, let vcl(k) = k, and let ZD be the associated identification
scheme as per Figure 5. If AE is polynomially-secure against chosen-ciphertext attack then ZD is
polynomially-secure in the CR1 setting. 1

3.3 An identification based protocol

IDENTIFICATION BASED PROTOCOL. As discussed in the introduction, proof of knowledge based

14

identification protocols of the Fiat-Shamir type cannot be secure against reset attacks. In this section,
however, we present a general transformation of such identification schemes into secure ones in the
CR1 setting. We start with identification schemes that consists of three moves, an initial commitment
coM of the prover, a random value CHy, the challenge, of the verifier and a conclusive response RESP
from the prover. We call a protocol obeying this structure a canonical identification scheme.

Loosely speaking, we will assume that the underlying canonical identical scheme CID is secure
against non-resetting attacks in the CR1 model, i.e., against attacks where the adversary merely runs
concurrent sessions with the prover without resets before engaging in a verification. In addition to
the Fiat-Shamir system [20], most of the well-known practical identification schemes also achieve
this security level, for example Ong-Schnorr [29, 32] for some system parameters, Okamoto-Guillou-
Quisquater [25, 28] and Okamoto-Schnorr [31, 28]. Nonetheless, there are also protocols which are
only known to be secure against sequential attacks (e.g. [33]).

To avoid confusion with the derived scheme ZD, instead of writing Send(prvmsg,...) and
Send(vfmsg, . ..), we denote the algorithms generating the commitment, challenge and response mes-
sage for the CID-protocol CZD by CZD(cmt,...), CID(chall,...), and CZD(resp,...), respectively,
and the verification step by CZD(vf,...). We also write Advicdz‘%f}gﬁD (k) for the probability that an
impersonator Icrp succeeds in an attack on scheme CZD in the non-resetting CR1 setting.

PROTOCOL AND SECURITY. Our solution originates from the work of [11] about resettable zero-
knowledge. In order to ensure that the adversary does not gain any advantage from resetting the
prover, we insert a new first round into the CID-identification protocol in which the verifier non-
interactively commits to his challenge CHy . The parameters for this commitment scheme become part
of the public key. This keeps the adversary from resetting the prover to the challenge-message and
completing the protocol with different challenges.

In addition, we let the prover determine the random values in his identification by applying a
pseudorandom function to the verifier’s initial commitment. Now, if the adversary resets the prover
(with the same random tape) to the outset of the protocol and commits to a different challenge
then the prover uses virtually independent randomness for this execution, although having the same
random tape. On the other hand, using pseudorandom values instead of truly random coins does not
weaken the original identification protocol noticeably. Essentially, this prunes the CR1 adversary into
a non-resetting one concerning executions with the prover.

In order to handle the intrusion try we use use a special, so-called trapdoor commitment scheme
TDC for the verifier’s initial commitment. This means that there is a secret information such that
knowledge of this secret allows to generate a dummy commitment and to find a valid opening to any
value later on. Furthermore, the dummy commitment and the fake decommitment are identically
distributed to an honestly given commitment and opening to the same value. Without knowing the
secret a commitment is still solidly binding. Trapdoor commitment schemes exist under standard
assumptions like the intractability of the discrete-log or the RSA or factoring assumption [10] and
thus under the same assumptions that the aforementioned CID-identification protocols rely on.

Basically, a trapdoor commitment enables us to reduce an intrusion try of an impersonator I in
the derived scheme ZD to one for the CID-protocol. If I initiates a session with the verifier in ZD
then we can first commit to a dummy value 0°/() without having to communicate with the verifier in
CID. When I then takes the next step by sending coMm, we forward this commitment to our verifier
in CID and learn the verifier’s challenge. Knowing the secret key sktpc for the trapdoor scheme we
can then find a valid opening for our dummy commitment with respect to the challenge. Finally, we
forward I’s response in our attack.

The scheme is displayed in Figure 6. See Appendix B.3 and B.4 for definitions and notions.
The discussion above indicates that any adversary I for ZD does not have much more power than a
non-resetting impersonator attacking CZD and security of ZD follows from the security of CZD.

15

Theorem 3.6 [Concrete security of the identification based scheme in the CR1 setting] Let
CID be an CID-identification protocol and let vcl(-) be a polynomially-bounded function. Also, let
PRF be a pseudorandom function family and denote by 7DC a trapdoor commitment scheme. Let
ID be the associated identification scheme as per Figure 6. If I is an adversary of time-complexity
t(-) and query-complexity ¢(-) attacking ZD in the CR1 setting then there exists an adversary Icip
attacking CZD in a non-resetting CR1 attack such that

AQvERT (k) < q(k) - AV (k) + Adv] P (k) + AdvEgp i, (k) - (3)
Furthermore Icp has time-complexity ¢(k) and runs at most ¢(k) sessions with the prover before
trying to intrude.

As usual we have:

Corollary 3.7 [Polynomial-security of the identification based scheme in the CR1 setting]
Let PRF be a polynomially-secure pseudorandom function family and let 7DC be a polynomially-
secure trapdoor commitment scheme, set vcl(k) = k, and let ZD be the associated identification scheme
as per Figure 6. If CID is a polynomially-secure CID-identification protocol in the non-resetting CR1
model then ZD is polynomially-secure in the CR1 setting. I

Note that the public key in our CR1-secure identification scheme consists of two independent parts,
Pkemp and pkrpe. For concrete schemes the key generation may be combined and simplified. For
instance, for Okamoto-Schnorr the public key of the identification protocol describes a group of prime
order ¢, two generators g1, g2 of that group and the public key X = gi* 52 for secret 1,29 € Z,. The
prover sends COM = g1 g5> and replies to the challenge CHy by transmitting y; = 7; + CHyx; mod ¢ for
i = 1,2. In this case, the public key for the trapdoor commitment scheme could be given by ¢1, g3 = ¢7

for random trapdoor z € Z;, and the commitment function maps a value ¢ and randomness R. to
R
9193

3.4 A zero-knowledge based protocol

As we discussed in the Introduction the idea of [18] of proving identity by employing a zero knowledge
proof of knowledge has been the accepted paradigm for identification protocols in the smartcard
setting. Unfortunately, as we indicated, in the resettable setting this paradigm cannot work.

RESETTABLE ZERO KNOWLEDGE BASED IDENTITY. We thus instead propose the following paradigm.
Let L be a hard NP language for which there is no known efficient procedures for membership testing
but for which there exists a randomized generating algorithm G which outputs pairs (z,w), where
x € L and w is an NP-witness that « € L. (The distribution according to which (x,w) is generated
should be one for which it is hard to tell whether z € L or not). Each user Alice will run G to get a
pair (z,w) and will then publish z as its public key. To prove her identity Alice will run a resettable
zero-knowledge proof that x € L.

ProT1ocoL. To implement the above idea we need resettable zero-knowledge proofs for L. For this we
turn to the work of [11]. In [11] two resettable zero-knowledge proofs for any NP language are proposed:
one which takes a non-constant number of rounds and works against a computationally unbounded
prover, and one which only takes a constant number of rounds and works against computationally
bounded provers (i.e argument) and requires the verifiers to have published public-keys which the
prover can access. We propose to utilize the latter, for efficiency sake. Thus, to implement the
paradigm, we require both prover and verifier to have public-keys accessible by each other. Whereas
the prover’s public key is whose membership in L it will prove to the verifier, the verifier’s public key
in [11] is used for specifying a perfectly private computationally binding commitment scheme which

16

the prover must use during the protocol. (Such commitment schemes exist based for example on the
strong hardness of Discrete Log Assumption.)

SECURITY. We briefly outline how to prove that the resulting ID protocol is secure in the CR1
setting. Suppose not, and that after launching a CR1 attack, an imposter can now falsely identify
himself with a non-negligible probability. Then, we will construct a polynomial time algorithm A to
decide membership in L. On input x, A first launches the off-line resetting attack using x as the public
key and the simulator — which exists by the zero-knowledge property — to obtain views of the protocol
execution. (This requires that the simulator be black-box, but this is true in the known protocols.) If
x € L, this view should be identical to the view obtained during the real execution, in which case a
successful attack will result, which is essentially a way for A to find a language membership proof. If
x not in L, then by the soundness property of a zero-knowledge proof, no matter what the simulator
outputs, it will not be possible to prove membership in L.

Acknowledgments

The second author thanks Ran Canetti for discussions about resettable security.

References

[1] M. BELLARE, A. BOLDYREVA AND S. MICALI, “Public-key encryption in a multi-mser Setting: Security
proofs and improvements,” Advances in Cryptology — EUROCRYPT ’00, Lecture Notes in Computer
Science Vol. 1807, B. Preneel ed., Springer-Verlag, 2000.

[2] M. BELLARE, R. CANETTI, AND H. KRAWCZYK, “Pseudorandom functions revisited: The cascade
construction and its concrete security,” Proceedings of the 37th Symposium on Foundations of Computer
Science, IEEE, 1996.

[3] M. BELLARE, R. CANETTI, AND H. KRAWCZYK, “A modular approach to the design and analysis of
authentication and key exchange protocols,” Proceedings of the 30th Annual Symposium on the Theory
of Computing, ACM, 1998.

[4] M. BELLARE, A. DESAI, D. POINTCHEVAL AND P. ROGAWAY, “Relations among notions of security
for public-key encryption schemes,” Advances in Cryptology — CRYPTO 98, Lecture Notes in Computer
Science Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[5] M. BELLARE, M. FISCHLIN, S. GOLDWASSER AND S. MIcALI, “Identification protocols secure against
reset attacks,” Preliminary version of this paper, Advances in Cryptology — EUROCRYPT °01, Lecture
Notes in Computer Science Vol. 2045, B. Pfitzmann ed., Springer-Verlag, 2001.

[6] M. BELLARE AND O. GOLDREICH, “On defining proofs of knowledge,” Advances in Cryptology —
CRYPTO ’92, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

[7] M. BELLARE AND S. MicaLl, “How to sign given any trapdoor permutation,” JACM, Vol. 39, No. 1,
January 1992, pp. 214-233.

[8] M. BELLARE, D. POINTCHEVAL AND P. ROoGAWAY, “Authenticated key exchange secure against dictio-
nary attack,” Advances in Cryptology — EUROCRYPT 00, Lecture Notes in Computer Science Vol. 1807,
B. Preneel ed., Springer-Verlag, 2000.

[9) M. BELLARE AND P. RoGgaway, “Entity authentication and key distribution”, Advances in Cryptology
— CRYPTO 93, Lecture Notes in Computer Science Vol. 773, D. Stinson ed., Springer-Verlag, 1993.

[10] G. BrRASSARD, D. CHAUM AND C. CREPEAU, “Minimum Disclosure Proofs of Knowledge,” Journal of
Computer and Systems Science, Vol. 37, No. 2, 1988, pp. 156—-189.

[11] R. CANETTI, S. GOLDWASSER, O. GOLDREICH AND S. MICALI, “Resettable zero-knowledge,” Proceed-
ings of the 32nd Annual Symposium on the Theory of Computing, ACM, 2000.

17

[12]

R. CRAMER AND I. DAMGARD, “New generation of secure and practical RSA-based signatures,” Advances
in Cryptology — CRYPTO ’96, Lecture Notes in Computer Science Vol. 1109, N. Koblitz ed., Springer-
Verlag, 1996.

R. CRAMER AND V. SHOUP, “A practical public key cryptosystem provably secure against adaptive
chosen-ciphertext attack,” Advances in Cryptology — CRYPTO ’98, Lecture Notes in Computer Science
Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

R. CRAMER AND V. SHOUP, “Signature schemes based on the strong RSA assumption,” Proceedings of
the 6th Annual Conference on Computer and Communications Security, ACM, 1999.

D. DoLEv, C. DWORK AND M. NAOR, “Non-malleable cryptography”, SIAM J. on Computing, Vol. 30,
No. 2, 2000, pp. 391-437. Preliminary version in STOC 91.

C. DWORK AND M. NAOR, “An efficient existentially unforgeable signature scheme and its applications,”
J. of Cryptology, Vol. 11, No. 3, 1998, pp. 187—-208.

C. DwWORK, M. NAOR AND A. SAHAI “Concurrent zero-knowledge,” Proceedings of the 30th Annual
Symposium on the Theory of Computing, ACM, 1998.

U. FEIGE, A. FIAT AND A. SHAMIR, “Zero-knowledge proofs of identity,” J. of Cryptology, Vol. 1, 1988,
pp. 77-94.

U. FEIGE AND A. SHAMIR, “Witness indistinguishable and witness hiding protocols,” Proceedings of
the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

A. F1aT AND A. SHAMIR, “How to prove yourself: Practical solutions to identification and signature prob-
lems,” Advances in Cryptology — CRYPTO 86, Lecture Notes in Computer Science Vol. 263, A. Odlyzko
ed., Springer-Verlag, 1986.

O. GOLDREICH, S. GOLDWASSER AND S. MICALI, “How to construct random functions,” Journal of the
ACM, Vol. 33, No. 4, 1986, pp. 210-217.

S. GOLDWASSER, S. MiCALI AND C. RACKOFF, “The knowledge complexity of interactive proof systems,”
SIAM J. on Computing, Vol. 18, No. 1, pp. 186-208, February 1989.

S. GOLDWASSER, S. MICALI AND R. RIVEST, “A digital signature scheme secure against adaptive chosen-
message attacks,” SIAM Journal of Computing, Vol. 17, No. 2, April 1988, pp. 281-308.

R. GENNARO, S. HALEVI AND T. RABIN, “Secure hash-and-sign signatures without the random oracle,”
Advances in Cryptology — EUROCRYPT 99, Lecture Notes in Computer Science Vol. 1592, J. Stern ed.,
Springer-Verlag, 1999.

L.C. GUuIiLLOU AND J.-J. QUISQUATER, “A Practical Zero-Knowledge Protocol Fitted to Security Micro-
processors Minimizing Both Transmission and Memory,” Advances in Cryptology — EUROCRYPT 88,
Lecture Notes in Computer Science Vol. 330, C. Gunther ed., Springer-Verlag, 1988.

M. NAOR AND M. YUNG, “Universal one-way hash functions and their cryptographic applications,”
Proceedings of the 21st Annual Symposium on the Theory of Computing, ACM, 1989.

M. NAOR AND M. YUNG, “Public-key cryptosystems provably secure against chosen ciphertext attacks,”
Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

T. OxkAMOTO, “Provably Secure and Practical Identification Schemes and Corresponding Signature
Schemes,” Advances in Cryptology — CRYPTO 92, Lecture Notes in Computer Science Vol. 740, E. Brick-
ell ed., Springer-Verlag, 1992.

H. ONG AND C.P. SCHNORR, “Fast Signature Generation with a Fiat-Shamir Identification Scheme”
Advances in Cryptology — EUROCRYPT ’90, Lecture Notes in Computer Science Vol. 473, I. Damgard
ed., Springer-Verlag, 1990.

T.P. PEDERSEN, “Non-Interactive and Information-Theoretical Secure Verifiable Secret Sharing,” Ad-
vances in Cryptology — CRYPTO ’91, Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed.,
Springer-Verlag, 1991.

C.P. SCHNORR, “Efficient Signature Generation by Smart Cards,” J. of Cryptology, Vol. 4, 1991, pp. 161—
174.

18

[32] C.P. SCHNORR, “Security of 2-Root Identification and Signatures” Advances in Cryptology — CRYPTO
’96, Lecture Notes in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[33] V. SHOUP, “On the Security of a Practical Identification Scheme,” J. of Cryptology, Vol. 12, 1999,
pp. 247-260.

[34] C. RACKOFF AND D. SIMON, “Non-interactive zero-knowledge proof of knowledge and chosen cipher-
text attack”, Advances in Cryptology — CRYPTO 91, Lecture Notes in Computer Science Vol. 576,
J. Feigenbaum ed., Springer-Verlag, 1991.

[35] J. ROMPEL, “One-Way Functions are Necessary and Sufficient for Secure Signatures,” Proceedings of
the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.

A Remarks about the notions of security

THE IDENTIFICATION PROBLEM BEING CONSIDERED. We are considering unilateral identification.
(One party, the prover, wants to identify itself to another party, the verifier. The other possibility
is multilateral identification in which both parties want to identify themselves to each other.) We
are in a public-key setting, also called the asymmetric setting. (The prover’s public key is known
to the verifier. Other possibilities are that the identification is based on shared keys, also called the
symmetric setting, or involves a trusted authentication server, the so-called three party setting.) In
some contexts —notably that of authenticated session-key exchange in a concurrent setting— the
identification problem has been called the entity authentication problem. It is the same problem.

IDENTIFICATION AS A PRELUDE TO SECURE SESSIONS AND THE ROLE OF SESSION KEYS. Identification
is hardly an end in itself: an entity goes through an identification process in order to then conduct
some transaction that is allowed only to this entity. For example, you first identify yourself to the
ATM machine and then withdraw cash. As this example indicates we imagine the transaction as an
exchange between prover and verifier taking place after the verifier has accepted in the identification
protocol. In the smartcard setting (setting one) this picture is valid because once identification is
completed, an adversary cannot step in. (Your card is in the ATM machine and until it is removed the
adversary is cut off.) In the Internet setting (setting two) however, identification by itself is largely
useless because an adversary can “hijack” the ensuing session, meaning impersonate the prover in
the transaction flows that follow the identification, by simply waiting for the verifier to accept and
then sending its own messages to the verifier. To have secure transactions, some information from
the identification process must be used to authenticate flows in the transaction. This information is
usually a session key. Identification without session key exchange is for practical purposes hardly useful
in setting two, which is why previous works such as [9, 8] have looked at the problems in combination.
In this paper however our focus is the new issues raised by reset attacks and in order to get a better
understanding of them in setting two we simplify by decoupling the identification and the session key
exchange. Our protocols can be modified to also distribute a session key.

THE NEED FOR MULTIPLE PROVER INSTANCES. Could we simplify the model by providing only a
single prover-instance oracle? The answer is no. We can give an example protocol that is secure if
the adversary can access only a single prover instance, but is insecure if the adversary can access
polynomially-many prover instances.

B Primitives used and their security

Our protocols make use of signature schemes satisfying some special properties, and of standard
chosen-ciphertext secure encryption schemes. This section recalls the necessary background.

19

(pk, sk) < DS (keygen, k) — Generate public key pk and matching secret key sk

SIG < DS(sign, sk, MsG) — Compute signature of message MSG

decision < DS (vf, pk, MSG, s1G) — Verify that sIG is a valid signature of MSG (accept or reject)

Figure 7: The digital signature scheme description DS describes all functionalities associated to the
signature scheme.

B.1 Stateless digital signature schemes

SIGNATURE SCHEMES. A digital signature scheme is specified by a description function DS, which, as
indicated in Figure 7, specifies how keys are generated, how messages are signed, and how candidate
signatures are verified. (As usual it is required that true signatures —meaning those generated by
DS (sign, sk, -)— always successfully pass the verification test.) The key generation algorithm is prob-
abilistic and the verification algorithm is deterministic. The signature algorithm merits a separate
discussion which will come later.

SECURITY OF A SIGNATURE SCHEME. The usual definition of security against chosen-message attack
is adopted [23].

Definition B.1 [Security of a digital signature scheme] Let DS be a digital signature scheme
description, F' an adversary (called a forger in this context) having access to an oracle, and k the
security parameter. Define

Experimentdpss’ (k)

(pk, sk) < DS(keygen, k) ; WINp « false

(MSG, SIG) « FPS(signsk,)(pl)

If DS(vf, pk,MsG,sIG) = accept and F never made oracle query MSG
then WINg « true

The advantage of forger F is
Adv§s p(k) = Pr[WINg = true

where the probability is with respect to ExperimenthSS, (k). Digital signature scheme DS is said

to be polynomially-secure if Adv%ss(-) is negligible for any forger F' of time-complexity polynomial in
k.1

The time-complexity ¢(k) of adversary F' is defined as the execution time of Experimentdpss’ r(k), as
with previous definitions.

STATE AND RANDOMIZATION IN SIGNING. The signing algorithm DS(sign, sk, -) might be stateful (and
possibly randomized); randomized but not stateful; or deterministic and stateless. We label a scheme
in this regard according to the attribute of its signing algorithm, meaning the scheme is referred to as
stateful (resp. stateless, randomized, deterministic) if the signing algorithm is stateful (resp. stateless,
randomized, deterministic). The difference is important to the application to identification so we detail
it. In a stateful scheme —this is called “history dependent” in some works [23]— the signer maintains
some state information state across invocations of the signing procedure. When a message is received,
the signer flips some coins; then produces a signature as a function of state, the coins flipped, the
message and the keys; then updates state as a function of the coins and message; finally stores state
so that it is available at the next invocation of the signing procedure. In a randomized but stateless
scheme, the signing algorithm flips coins upon each invocation, but no global state is maintained across
invocations. In the simplest case the signing algorithm is not randomized (ie. deterministic) and not
stateful (ie. stateless). It associates to any message a unique signature.

20

Definition B.1 applies regardless of whether the signing procedure is stateful or stateless, ran-
domized or deterministic. But we stress that the oracle DS(sign, sk, -) provided to the forger F' in
Definition B.1 is responsible for implementing any statefulness or randomization in the signing process
and does so as described above. In particular, if the scheme is randomized, fresh coins are picked and
used upon each invocation of the oracle; if the scheme is stateful, the oracle maintains and updates
the state. (In particular the adversary has no way to force the oracle to reuse a particular set of coins
for two signatures. This will be important later.)

The basic versions of the schemes of [23, 7, 26, 35] are (randomized and) stateful. The more effi-
cient schemes of [16, 12] are also (randomized and) stateful. Examples of (randomized but) stateless
schemes are those of [24, 14]. Although there seem to be few schemes that are “naturally” stateless,
deterministic and secure, any signature scheme can be made stateless and deterministic while preserv-
ing security. A well-known transformation —attributed in [23] to Goldreich and Levin— transforms
a stateful scheme into a (randomized but) stateless one by using a binary tree structure. A stateless
signing algorithm can be derandomized —while preserving statelessness and security— via the follow-
ing (folklore) trick: the secret key is expanded to include a key k specifying an instance PRF (eval, &, -)
of a family of pseudorandom functions (see [21] or Appendix B.3), and to sign message MSG compute
Ryisg = PRF (eval, k,MSG) and use Rysg as the coins f or the signing algorithm. Combining this
with Rompel’s result [35] implies:

Proposition B.2 If there exists a one-way function then there exists a stateless, determinstic polynomially-
secure digital signature scheme.

This addresses the “theoretical” question of the existence of stateless, deterministic signature schemes
by indicating they exist under the minimal possible complexity assumption. The next question —on
the “practical” side— is about the cost of available solutions. The most efficient known signature
schemes that are provably-secure under standard —meaning non-random oracle— assumptions are
those of [24, 14]. These schemes are randomized but stateless. Derandomization is cheap if properly
implemented: Instantiate the pseudorandom function used in the derandomization process discussed
above with a block cipher, and the impact on the cost of signing —already involving public key
operations— is negligible. In this way we get efficient, stateless, deterministic signature schemes that
are provably polynomially-secure under standard assumptions. (One can also consider the earlier
schemes of [16, 12] but they are less efficient than those of [24, 14] and also are stateful. Making a
stateful scheme stateless seems to be more costly than derandomizing an already stateless scheme.)

B.2 CCAZ2-secure Encryption schemes

ENCRYPTION SCHEMES. An asymmetric encryption scheme is specified by a description function
AE, which as indicated, in Figure 8, specifies how keys are generated, how messages are encrypted,
and how ciphertexts are decrypted. (As usual it is required that if ciphertext CTXT is generated
via AE(enc, pk,MSG) then AE(dec, pk, sk, CTXT) returns MSG.) The key generation and encryption
algorithms are probabilistic while the decryption algorithm is deterministic.

SECURITY OF AN ENCRYPTION SCHEME. We require indistinguishability against chosen-ciphertext
attack. The version of the definition we adopt, from [1], allows the adversary multiple “test” message
pairs rather than a single one, and was shown by them to be polynomially equivalent to the more
standard formuation of [34]. Define LR(MSGq, MSG1,b) = MSGy, for any equal-length strings MSGg, MSG;
and bit b.

Definition B.3 [Security of an encryption scheme under chosen-ciphertext attack] Let AE
be an asymmetric encryption scheme description. Let E be an adversary (called an eavesdropper in

21

(pk, sk) «— AE(keygen, k) — Generate public key pk and matching secret key sk

CTXT «— A& (enc, pk,MsG) — Compute encryption of message MSG

ouT « AE(dec, pk, sk, cTXT) — The decryption procedure takes the public key, secret key and a
ciphertext CTXT and returns OUT which is either a message MSG or the special symbol L to indicate
it considered the ciphertext invalid.

Figure 8: The asymmetric encryption scheme description AE describes all functionalities associated
to the encryption scheme.

this context) having access to two oracles, the first taking as input any two strings of equal length and
the second any string. Let k& be the security parameter. Define

Experimentlﬂ‘ﬁcﬁ(k)
(pk, sk) «— AE(keygen, k) ; WINg < false
cB & {0,1} / Random challenge bit //
GB « FAE(enc.pk,LR(:,-,0B)), AE(dec,pk,sk) (pk))/ Eavesdropper’s guess bit //
If GB = CB and A€&(dec, pk, sk, -) was never called on a ciphertext
returned by A€ (enc, pk, LR(:, -, CB))
then WINg « true

The advantage of eavesdropper F is
AdVdASS,E(k) =2.-Pr[WiNg =true| — 1
Ir-cca

where the probability is with respect to Experiment ¢ %(k). Asymmetric encryption scheme A€ is
Ir-cca

said to be polynomially-secure if Adv ;£*(-) is negligible for any eavesdropper E of time-complexity
polynomial in k. 1

We call AE(enc, pk, LR(-,,CB)) the “lr-encryption oracle” where “Ir” stands for “left or right.”

B.3 Pseudorandom functions

PSEUDORANDOM FUNCTIONS. We keep the definition as simple as possible for our purpose. A pseu-
dorandom function family is a function PRF (eval, -,) in two arguments. The first argument, called
the key, has k bits and defines in a straightforward way a function PRF (eval, , -) for any x € {0, 1}¥.
For every x € {0, 1}* the function PRF (eval, k, -) has input and output length inl(k) and outl(k); the
actual choice of inl(-) and outl(-) depends on the application.

SECURITY OF A PSEUDORANDOM FUNCTIONS. We adopt the definition of pseudorandom functions
being indistinguishable from random functions [21]:

Definition B.4 [Security of a pseudorandom function family| Let PRF be a pseudorandom
function family, D an adversary (called a distinguisher in this context) having access to an oracle, and
k the security parameter. Define

Experiment%rfg_-i% (k,b)
If b=0 then k< {0,1}* and let O(-) = PRF(eval, &, -)
If b =1 then let O(:) be a random function with input/output length inl(k) and outl(k)
GBp +— Do) (k)
The advantage of distinguisher D is
AdvB P (k) = |Pr[aBy = 1] — Pr[cBo =1]|

22

(pk, sk) < TDC(keygen, k) — Generate public key pk and secret key sk

TDCOM «— 7 DC(cmt, pk, ¢; R.) — Compute commitment of value ¢ with randomness R,

decision — T DC(vf, pk, TDCOM, ¢||R.) — Verify that TDCOM is commitment of ¢ and randomness
R.

(¢, R.),— TDC(fake, sk, c| R, ¢’) — Given a value ¢ and randomness R, and another value ¢’ use
the secert key sk to find R, such that ¢/, R, and ¢, R, yield the same commitment

Figure 9: The trapdoor commitment scheme description T DC describes all functionalities associated
to the trapdoor commitment scheme.

where the probabilities are with respect to Experiment%%f,i_i’%(k,b). The time-complexity t(k) of

D is defined as the maximum execution time Experiment%%ji_i%(k, b) for b = 0,1, and the query-
complexity is the maximum number of queries D makes to the oracle in either experiment. Set
Adv@%f (k) to be the maximum Adv%f{;%(k:) over all distinguishers D with time-complexity t(k)
and query-complexity g(k). The pseudorandom function family PRF is called polynomially-secure if

Advgfz—;—l%(-) is negligible for any distinguisher D of time-complexity polynomial in k. |

B.4 Trapdoor commitments

TRAPDOOR COMMITMENT SCHEMES. A (non-interactive) trapdoor commitment scheme is defined by
a function 7DC as displayed in Figure 9. The function 7DC specifies a key generation algorithm, a
commitment algorithm, a verification function deciding the correctness of a given commitment, and
a faking algorithm that allows to open a commitment with any value ¢’ given the secret key. We
demand that a commitment and such a faked opening is identically distributed to a commitment with
the correct opening for the same value ¢. In particular, this implies that the commitment scheme
provides perfect secrecy, i.e., a commitment is distributed independently of the actual value.

SECURITY OF A TRAPDOOR COMMITMENT SCHEME. We require that it is infeasible to find a commit-
ment and ambiguous decommitments.

Definition B.5 [Security of a trapdoor commitment scheme] Let 7DC be a trapdoor commit-
ment scheme description. Let C' be an adversary (called a collision-finder in this context) and let k
be the security parameter. Set

Experiment%glgé’f’(lj1 (k)

(pk, sk) < TDC(keygen, k) ; WINg « false

(TpCowm, ¢||R., ¢ ||R.) < C(k, pk)

If TDC(vf, pk,TDCOM,c||R.) = TDC(vf, pk, TDCOM, /|| R.) = accept and ¢ # ¢/
then WINg « true

The advantage of the collision-finder C is
Advi5EH (k) = Pr[WiNg = true]
where the probability is with respect to Experiment%ggcc%l(k). The trapdoor commitment scheme is
said to be polynomially-secure if AdviESSA () is negligible for any eavesdropper C of time-complexity
TDC,C
polynomial in k. Set Adv’P¢(k) to be the maximum Adv%‘%‘cc%l(k) over all collision-finder C' with

running time ¢(k). |

ID-BASED TRAPDOOR COMMITMENT SCHEME. For an ID-based trapdoor commitment scheme the
key generation algorithm returns a uniformly distributed string sidrpc € {0,1}7¢“*) as part of the

23

secret key. Yet, the public key is distributed independently of this string sidrpc. The commitment
algorithm 7DC(cmt, pk, -) now takes as input a string sid € {0, 1}"?“*) | a value ¢ and randomness R.
and returns a commitment.

Security for ID-based trapdoor commitment schemes is defined with respect to a collision-finder
that gets k, pk and sk (including sidrpc) as input and is considered to win if it outputs a commitment
with valid openings for two different values c, ¢ and the same sid, where sid is different from sidrpc.
In other words, the trapdoor property is tied to sidrpc and does not help to overcome the binding
property for other IDs.

As an example of an ID-based trapdoor commitment scheme we sketch a solution based on Ped-
ersen’s discrete-log commitment scheme [30]; similar solutions can be erected for RSA and factoring.
The public key consists of a group of prime order ¢ and two random generators g1, go of the group,
as well as another generator gs. The latter generator is defined by g3 = g; sidrpe g5 for random
sidtpc € {0, l}vd(k) and random z € Z,. Clearly, g3 hides sidtpc information-thereotically.

A commitment to (sid, ¢, R.) is defined by (gfdgg)cgfc. The trapdoor sktpc equals sidppc and z.
Because gi'dTDC g3 = g5 is is easy to adapt a decommitment for sidrpc by the discrete-log trapdoor

property [10]. Namely, given ¢, R, sidrpc, 2z and ¢ let R, = z¢ + R. — z¢’ mod ¢ such that

¢ R! zc'+R!, zc+R, sidrpc
93) 92 =gy =g5 =g

SidTDC

(g5 93) 95"

On the other side, for distinct ¢ # ¢ an ambiguous decommitment (¢, R.), (¢, R.) for the same
sid # sidrpc implies
id R id_\¢ R
(91°93)"92° = (97°93)" 9

or equivalently.
’ (sid—sidrpc)(c—/) (Rid2¢/)—(Retzc)
91 =92 :

Since sid —sidTpc, c— ¢ # 0 one can easily compute log,, g2, contradicting the discrete-log assumption.

C C(CR2-secure Identification protocols

The protocols of Section 3 are not secure in the CR2 setting. We show how the same paradigms can
be applied to yield modified protocols that are secure in the CR2 setting.

C.1 A signature based protocol

The signature based protocol of Figure 4 which we proved secure in the CR1 setting is not secure in
the CR2 setting, even in the absence of reset attacks, since there are no session ids. Indeed, if an
adversary activates two prover instances and plays the role of the verifier with each, then both accept
with the same session id, so the adversary wins as per our definition. In fact any identification protocol
in which the session ids have length O(log k) is not polynomially-secure in the CR2 setting.

We modify the protocol of Figure 4 by having the prover select a random “challenge” and sign
the concatenation of this with the verifier’s challenge. The session id (for both the prover and the
verifier) is the concatenation of the two challenges. We will prove that this protocol is secure in the
CR2 setting.

PROTOCOL AND SECURITY. Let DS be a deterministic, stateless signature scheme. Figure 10 illus-
trates the flows of the associated identification protocol ZD and then provides the protocol description.
(The latter includes several checks omitted in the picture but important for security against resets.)
Parameters of the protocol are the length wvcl(k) of the verifier’'s random challenge and the length
pcl(k) of the prover’s random challenge. The random tape, for each party, is its challenge. Refer to

24

Prover Verifier
pk,sk ; Coins: Rp = CHp pk ; Coins: Ry = CHy
start
CHy

DEACLE
s1G < DS(sign, sk, CHy ||CHp)
CHp||s1G
—_—

Output: sidy = CHy ||CHp

Output: sidp = CHy ||CHp and: decision = DS(vf, pk,
CHy ||CHp, SIG)

ID(keygen, k) = DS(keygen, k) — ID has same key generation process as DS

ID(prvmsg, sk, z; Rp) where |Rp| = pcl(k) | ZD(prvsid, sk, z; Rp) where |Rp| = pcl(k)

— Parse z as MSGq|| - - - ||[Msgq, — Parse z as MSG1 | - - - [[MsG,

—If [¢ {0,2} then Return L — If | # 3 or [MSGsa| # vcl(k) then Return L
— If [=0 then Return start ~ CHy « MSGy; sidp < CHy || Rp

— If |MSGo| # vcl(k) then Return L — Return sidp

— CHy < MSGsy; CHp < Rp
— SIG « DS (sign, sk, CHy ||CHPp)
— Return CHp||SIG

ID(vfend, pk, x; Ry) where |Ry| = vcl(k)

ID(vfmsg, pk, x; Ry) where |Ry| = vel(k) | Parse as MSG1 || - -« [MGy

— Parse z as MSGy| -+ [[MSGy — If | # 3 or MSGy # Ry then Return L
—1f 1 #1 then Return L — Parse MSG3 as CHp|[SIG with [cHp| = pel(k)
— CHy < Ry

— CHy <« MSGg ; sidy < CHy ||CHp
— decision < DS (vf, pk, CHy ||CHp, SIG)
— Return (sid, decision)

— Return CHy

Figure 10: Reset-secure identification protocol ZD for the CR2 setting based on a deterministic,
stateless digital signature scheme DS: Schematic followed by full protocol description.

Definition 2.2 and Definition B.1 for the meanings of terms used in the theorem below. The proof is
similar to that of Theorem 3.1 and is omitted.

Theorem C.1 [Concrete security of the signature based ID scheme in the CR2 setting]
Let DS be a deterministic, stateless signature scheme, let vel(-) and pel(-) be polynomially-bounded
functions, and let ZD be the associated identification scheme as per Figure 10. If I is an adversary
of time-complexity t(-) and query-complexity ¢(-) attacking ZD in the CR2 setting then there exists a
forger F' attacking DS such that

k k)2 — q(k
Q(l)+Q() q(k) (@)
Quc (k) 2pcl(k)+1
Furthermore F has time-complexity ¢(k) and makes at most ¢(k) signing queries in its chosen-message
attack on DS. |

AdvEP (k) < Adviss p(k) +

As before we get two corollaries:

Corollary C.2 [Polynomial-security of the signature based ID scheme in the CR2 set-
ting] Let DS be a deterministic, stateless signature scheme, let vel(k) = pcl(k) = k, and let ZD
be the associated identification scheme as per Figure 10. If DS is polynomially-secure then ZID is
polynomially-secure in the CR2 setting. 1

25

Prover Verifier

pk,sk ; Coins: Rp = NONCEp pk ; Coins: Ry = CHy || Re
NONCEp
_—
CTXT «— A& (enc, pk, NONCEp||CHy; Re)
CTXT
DELSAD.Y
PTXT « A€&(dec, pk, sk, CTXT)
Parse PTXT as NONCEp|/CHp
CHp
_—

If CHy = CHp
then decision <« accept else decision « reject
Output: sidy = NONCEp||[CHy

ID(keygen, k) = AE(keygen, k) — ZD has same key generation process as AE

ID(prvmsg, sk, x; Rp) where |Rp| = pcl(k) ID(prvsid, sk, z; Rp) where |Rp| = pcl(k)

— Parse x as MSG1|| - - - [|[Msg, — Parse x as MSGq| -+ [[MSGy

—~If [¢ {0,2} then Return L —If | # 3 then Return |

— If | =0 then Return Rp — CHp < MSC3 ; sid < Rp|/CHp

~ CTXT « MSGg ; PTXT « A& (dec, sk,crxT) | — If [CHp|# vcl(k) then Return L

~ If |PTXT| # pel(k)+wvcl(k) then Return | | — Return sid

— Parse PTXT as NONCEp||CHp with
INONCEp| = pel(k) and |cHp| = vel(k)

— If NONCEp # Rp then Return |

— Return CHp

ID(vfmsg, pk, x; Ry) ID(vfend, pk,x; Ry)

— Parse Ry as CHy ||R, with |cHy | = vcl(k) — Parse Ry as CHy || R, with |cHy | = vcl(k)
— Parse x as MSG1|| - - - [|[Msg, — Parse x as MSG1| -+ [[MSGy

—If [#1 then Return L — If [# 3 then Return L

— If |MSG1| # pcl(k) then Return L — If |MSGi|# pcl(k) then Return L

— CTXT « A& (enc, pk, MSG1||CHy; Re) — sid < Msas||cHy

— Return CTXT — If MSG3 = CHy

then decision < accept else decision « reject
— Return (sid, decision)

Figure 11: Reset-secure identification protocol ZD for the CR2 setting based on a chosen-ciphertext
attack secure asymmetric encryption scheme AE: Schematic followed by full protocol description.

Corollary C.3 [Existence of an ID scheme polynomially-secure in the CR2 setting] Assume
there exists a one-way function. Then there exists an identification scheme that is polynomially-secure
in the CR2 setting.

C.2 An encryption based protocol

The encryption based protocol of Figure 5 (which we proved secure in the CR1 setting) does not have
session ids, so the discussion above implies that it is not secure in the CR2 setting. Modifying this
protocol to make it secure in the CR2 setting is more tricky than in the case of the signature based
protocol. The first thought is to have the prover pick some random challenge CHp and convey it, in
the clear, along with PTXT. Both parties then set their session id to CHp|PTXT. But this protocol is
insecure. An adversary can modify CHp after the prover sends it, and the verifier would still accept,
but with a session id not shared by any prover instance, so that the adversary wins. (Modification

26

of CHp by the verifier in the protocol of Figure 10 would lead to the verifier rejecting because of the
attached signature, but we do not want to use signatures here.) Instead we have the prover send a
nonce (random string) in its first move, and have the verifier encrypt the concatenation of the prover
and verifier challenges.

PROTOCOL AND SECURITY. Let AE be an asymmetric encryption scheme polynomially-secure against
chosen-ciphertext attack. Figure 11 illustrates the flows of the associated identification protocol ZD
and then provides the protocol description. Parameters of the protocol are the length vcl(k) of the
verifier’s random challenge and the length pcl(k) of the prover’s random challenge. The random tape of
the prover is its nonce, and that of the verifier is its challenge together with coins R, sufficient for one
invokation of the encryption algorithm. Refer to Definition 2.2 and Definition B.3 for the meanings of
terms used in the theorem below. The proof is similar to that of Theorem 3.4 and is omitted.

Theorem C.4 [Concrete security of the encryption based ID scheme in the CR2 setting] Let
AE be an asymmetric encryption scheme, let vcl(-) and pel(-) be polynomially-bounded functions, and
let ZD be the associated identification scheme as per Figure 11. If I is an adversary of time-complexity
t(-) and query-complexity ¢(-) attacking ZD in the CR2 setting then there exists an eavesdropper E
attacking AE such that

2q(k) +2 | q(k)* — q(k)

id-cr2 Ir-cca
Advipy (k) < Adv s (k) + uel(k) opcl(k) ®)

Furthermore E has time-complexity ¢(k), makes one query to its lr-encryption oracle, and at most
q(k) queries to its decryption oracle.

As before we get the corollary:

Corollary C.5 [Polynomial-security of the encryption based ID scheme in the CR2 setting]
Let AE be an asymmetric encryption scheme, let vel(k) = pcl(k) = k, and let ZD be the associated
identification scheme as per Figure 11. If A€ is polynomially-secure against chosen-ciphertext attack
then ZD is polynomially-secure in the CR2 setting. 1

C.3 An identification based protocol

We modify the CR1 secure identification scheme in Section 3.3 to achieve CR2 security. For this we
define an adversarial success slightly more stingent: the impersonator is not considered to be victorious
anymore if it confuses the verifier and generates session ID collisions in the executions with the prover.
Rather, the only way for the adversary to win is by passing the verifier’s examination for a fresh session
ID. We write AdVVI"eD‘fl}'id'm(k) for the success probability of adversary I winning under this slightly
weaker security notion in a CR2-attack against ZD.

PROTOCOL AND SECURITY. The key to accomplish CR2-security lies in the extension of the trapdoor
commitment scheme to an ID-based one: the key generation algorithm outputs (pktpc, skrpc) such
that skrpc includes a uniformly distributed string sidrpc of length wvcl(k), and such that pkppc
is distributed independently of sidrpc. The input to the commitment function takes an additional
string of length wvcl(k). Given a commitment involving sidrpc it is easy to open this commitment
with any value later. But it is still infeasible to find ambiguous decommitments for a commitment
with sid # sidrpc, even if one knows skrpc. An example based on the discrete logarithm is given in
Section B.4.

Roughly, an ID-based trapdoor commitment schemes links a session ID to the trapdoor property.
So if we simulate the adversary I to derive an impersonater for Icp, as done in the CR1 setting, we
can later use the previously generated sidypc in the adversary’s intrusion attempt. This means that
the adversary cannot use this session ID in its executions with the prover (otherwise the adversary

27

Prover Verifier
pk = (pkcip, Pkrpc), sk = skcmp pk
Coins: Rp =k Coins: Ry = sid||CHy || R,
start

TDCOM «— T DC(cmt, pkrpc,sid||CHy; R,)

sid|| TbcoM
Rcip « PRF (eval, s, sid| TDcom)
COM <«— CID(cmt, SkCID; RCID)
COM

CHVHRC
— e

If TDC(vf, pkopc, TDCOM,sid||CHy || R.) = accept
then RESP « CZD(resp, skcip, COM||CHy; Rcip)

else RESP « L
RESP

decision «— CID(vf, pkcip, COM||CHy ||RESP)

Output: sidp = sid Output: sidy = sid and decision

ID(keygen, k) = CID(keygen, k) and 7DC(keygen, k)

Figure 12: Reset-secure identification protocol ID for the CR2 setting based on secure CID-
identification scheme

is not considered victorious according to the definition). But if the impersonator forgos using sidrpc
then all its commitments for other session IDs are binding and a similar argument to the one in the
CR1 model applies. Since the public key of the trapdoor scheme hides sidrpc perfectly, we can later
claim that the verifier has chosen sidrpc only then.

The difference to the CR1 setting is that the impersonator I may now interleave the execution with
the verifier and the ones with prover. Let Advicdz'%f}gé (k) be the success probability of Icip breaking
CID in a non-resetting CR2-attack. Although CID-protocols fail to be secure against such attacks
in general, e.g., the woman-in-the-middle adversary breaks such schemes in this setting, luckily they
remain secure under a certain condition on the adversary. Therefore, we will still able to start with
the previously mentioned known CID-protocols.

To specify the condition under which CID-schemes remain secure, consider an execution of an
impersonator Icip attacking CZD in a non-resetting CR2 attack. At some step the verifier sends a
random challenge CHy to Icip and the adversary then finishes the attack, either successfully or not.
Define a challenge reset to be the following action: reset the state of the prover, the adversary and
the verifier to the point before sending CHy; then transmit another random CHY, instead and continue
the adversary’s attack on this new challenge. The reason for considering such challenge-resets is that
they are normally used to prove security for CID schemes, refer to [18] for details.

Next we look at what happens on the prover’s side in challenge resets. We are especially interested
in executions in which the prover has sent a commitment COM before the adversary received CHy, and
in which the impersonator has answered with some challenge CH in that execution with the prover
after receiving CHy . This implies that after a challenge reset the adversary may now decide to send a
different challenge cH’ instead of cH. We say that the impersonator never finishes an execution with
the prover ambiguously if this never happens. For a function chr(-) we say that an CID-identification
protocol is chr-challenge-resettable for Icip if the impersonator Icip never finishes an execution with

28

the prover ambiguously, even if chr(k) challenge resets occur. As for the asymptotic behavior, it is
understood that a polynomially-secure CID-protocol in the non-resetting CR2 setting refers to security
against any polynomially-bounded, non-resetting CR2-adversary Icip for which the protocol is chr-
challenge-resettable for any polynomial chr(-).

To clarify the notion we consider two examples. No CID-scheme is even 2-challenge-resettable for
the woman-in-the-middle adversary. The reason is such an adversary duplicates all messages of the
prover and the verifier and if we execute a challenge reset then the adversary imitates this, too. In
contrast, for any non-resetting CR1-adversary any CID-protocol is challenge-resettable because the
executions with the prover are already finished when the intrusion try starts.

In comparison to the CR1-secure scheme, here the verifier chooses a random session ID and the
ID-based trapdoor scheme is applied to commit to the session ID and the challenge at the beginning
of an execution. The session ID is also transmitted in clear together with the commitment. Except
for this modified commitment the rest of the protocol remains unchanged. The common session 1D is
set to the verifier’s choice (and thus it is easy for the adversary to make sessions with the prover end
up with the same ID).

Theorem C.6 [Concrete security of the identification based scheme in the CR2 setting] Let
CID be an CID-identification protocol and let chr(-), vcl(-) be polynomially-bounded functions. Also,
let PRF be a pseudorandom function family and denote by 7DC an ID-based trapdoor commitment
scheme. Let ZD be the associated identification scheme as per Figure 12. If [is an adversary of
time-complexity ¢(-) and query-complexity ¢(-) attacking ZD in the CR2 setting then there exists
an adversary Icmp attacking CZD in a non-resetting CR2 attack such that CZD is chr(:)-challenge-
resettable for Icp and

AQVIETC (k) < q(k) - Adv((k) + Advi 50 (k) + AdvEzp e (k) - (6)
For the asymptotic counterpart we have:

Corollary C.7 [Polynomial-security of the identification based scheme in the CR2 setting]
Let PRF be a polynomially-secure pseudorandom function family and let 7DC be a polynomially-
secure ID-based trapdoor commitment scheme, set vcl(k) = k, and let ZD be the associated identi-
fication scheme as per Figure 12. If CZD is a polynomially-secure CID-identification protocol in the
non-resetting CR2 setting then ZD is polynomially-secure in the CR2 setting. |

D Proofs
D.1 Proof of Theorem 3.1

Figure 13 describes the forging algorithm F' attacking DS. It runs [as a subroutine, itself responding
to the latter’s oracle queries so as to provide a “simulation” of the environment provided to [in
Experiment%%’f?(k), and eventually outputs a forgery. The forger is not in possession of the secret
key sk which is used by prover instances but can compensate using its access to the signing oracle.
Important to the fact that the time-complexity of F' is t(k) —the same as that of [— are our conven-
tions under which the time measured pertains to the entire experiment. (In particular the time used
by the signing oracle is not an “extra” for the forger since it corresponds to invocations of the signing

algorithm by prover instances in Experimentifibf}(k).) It remains to verify Equation (1).

We claim that the simulation is “perfect” in the sense that from the point of view of [it is in
Experimentlz%f?(k). Barring the use of the signing oracle to compute the signatures, the forger
mimics Experiment%}f?(k) faithfully, so what we need to check is that the values returned to the

impersonator via the signing oracle are the same as those it would get from prover instances in

29

Adversary FPSGignsk)(pk) — Forger given signing oracle

Initialization:

(1) Choose Ry = cHy of length vcl(k) at random ; Cy «— 0 // Coins and message counter for
verifier //

(2) p« 0 J/ Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

e When I makes query WakeNewProver // Activate a new prover instance //
(1) p—p+1; R, < ¢€; Return p

e When I makes query Send(prvmsg, i, MSG1|| - - - [|[MSGg;) with 0 < 2j <3 and 1 <i <p
(1) If Cy #0 then Return L
(2) If 25 =0 then Return start
(3) If 2j =2 then / MSG; = start and MSGy is verifier challenge //
— If |MSGa| # vcl(k) then Return L
— MSG3 < DS(sign, sk,MSGz) // Invoke signing oracle //
— Return MSGjs

e When I makes query Send(vfmsg, MSG1|| - [[MSGg;_1) with 1 <25 —1 <3
(1) Cy « Cy+2
(2) If 2j < Cy then Return L // Not allowed to reset the verifier //
(3) If 2j—1 =1 then MSGy < CHy ; Return MSGo
(4) If 2j—1=3 then
— SIG + MSGC3
— decision < DS(vf, pk, CHy, SIG)
— Return ¢l|decision

Forgery: Return (CHy,SIG) / Output of the forger //

Figure 13: Forger F attacking DS, using as subroutine an impersonator I attacking the signature
based ID protocol ZD of Figure 4.

Experimentiz%f?(k), even in the presence of resets. This is true because the signing algorithm is

stateless and deterministic. (Had the signing algorithm been probabilistic or stateful, the signature
returned by a prover instance after a reset would not be obtainable via the signing oracle since the
latter uses fresh coins each time or updates its state in the normal way while the reset prover instance
would reuse signing coins or state.) This claim about the quality of the simulation is used to erase the
distinction between the experiments in the relevant probabilities below.

Let GUESSCHALL be the event that I makes a query Send(prvmsg, p, start|[MSGso) in which MSGe = CHy
equals the random challenge Ry = CHy chosen for the verifier in the initialization phase. As long as
this event does not occur, F' does not invoke its signing oracle on its output message CHy, and thus,

as per Definition B.1, wins if DS(vf, pk, CHy, SIG) = accept. We now bound the advantage of I as
follows:

Pr[WiN; =true] = Pr [WINI = true A GUESSCHALL] + Pr[WiN; = true A GUESSCHALL]

= Pr[WIiNg = true] + Pr| WiIN; = true A GUESSCHALL]
< Pr[WINg = true | + Pr | GUESSCHALL | .

30

Adversary EAS(enc.PkLR(:,:,cB)), AE(dec,pk;sk,) (pL) — Eavesdropper given lr-encryption oracle and de-
cryption oracle

Initialization:
(1) Cy <0 J/ Message counter for verifier, but no coins. //
(2) p« 0 J/ Number of active prover instances //

Execute adversary I on input pk and reply to its oracle queries as follows:

e When I makes query WakeNewProver // Activate a new prover instance //
(1) p<—p+1; Pick a tape R, at random ; Return p

e When I makes query Send(prvmsg, i, MSG1|| - - [|[MSGg;) with 0 < 2j <3 and 1 <i <p
(1) If Cy #0 then Return L
(2) If 25 =0 then Return start
(3) If 2j =2 then |/ MSG; = start and MSGy is ciphertext //
— MSG3 «— AE(dec, sk,MSG2) // Invoke decryption oracle //
— If |MSG3| # vcl(k) then Return | else Return MSGs

e When I makes query Send(vfmsg, MSG1|| - - - [|[MSGgj_1) with 1 <2j —1 <3
(1) Cv « Cy+2
(2) If 2j < Cy then Return L // Not allowed to reset the verifier //
(3) If 2j—1=1 then
— Let CHp, CH; be random but distinct strings of length vel(k)
— CTXT « A&(enc, pk, LR(CHp, CH1,CB)) / Invoke Ir-encryption oracle on the messages
CHp,CH; //
— MSGo «— CTXT Return MSGo
(4) If 2j—1=3 then
— If MSG3 = CHg then GB «+— 0
— else If MSG3 = CH; then GB «+ 1
— else let GB be a random bit
/| The eavesdropper sets its guess bit and terminates. Nothing is returned to I in reply to
this query since it is the last query and the eavesdropper has everything it needs anyway. //

Output: Return GB // Guess bit returned by eavesdropper //

Figure 14: Eavesdropper E attacking AE, using as subroutine an impersonator I attacking the en-
cryption based ID protocol ZD of Figure 5.

Now note the probability of GUESSCHALL is at most q(k)/2"*“¥) since we have assumed that the
number of Send(prvmsg, -, -) queries made by I is at most ¢(k) and no information about Ry is provided
during the simulation of Send(prvmsg, -, -) queries. This yields Equation (1) as desired.

D.2 Proof of Theorem 3.4

Figure 14 describes the eavesdropping algorithm F attacking AE. It runs I as a subroutine, itself
responding to the latter’s oracle queries so as to provide a “simulation” of the environment provided
to I in Experimentif{ﬁ(k). The eavesdropper is not in possession of the secret key sk which is
used by prover instances but can compensate using its access to the decryption oracle. As usual
our conventions on the way time-complexity is measured are important to it being the case that the

31

time-complexity of F is t(k), the same as that of I. It remains to verify Equation (2).

We claim that the simulation is “perfect” —in the sense that from the point of view of I it is in
Experimentizdbf?(k)— except for there being no reply made to the very last query of I, this being
its third move message to the verifier. Indeed, the answers provided to Send(prvmsg, -, -,) queries are
clearly the same in the simulation as in the real experiment due to invocation of the same decryption
procedure, even though in the real experiment it is directly invoked and in the simulation it is invoked
as an oracle without direct access to the underlying secret key. Now consider Send(vfmsg,) queries.
Since both CHy and CH; are chosen at random, the ciphertext MSGs returned by the simulated verifier
is formed by encrypting a random string, regardless of the value of the (unknown to F) challenge
bit ¢B, and this is distributed like the corresponding ciphertext in the real experiment. In reply to
its last query to the verifier, I would expect to receive the verifier decision. This is not provided in
the simulation (indeed E does not know how to provide this since it does not know CB) but this is
immaterial since E is in possession of I’s guess MSGs at the challenge and, using this, outputs its own
guess bit GB. This claim about the quality of the simulation is used to erase the distinction between
the experiments in the relevant probabilities below.

Let GUESSCIPH be the event that I makes a query Send(prvmsg, p, start||MSGz) in which MSGg = CTXT
equals the ciphertext that E obtained via its query to its Ir-encryption oracle. As long as this event
does not occur, E does not invoke its decryption oracle on any ciphertext returned by its Ir-encryption
oracle, and thus, as per Definition B.3, wins if GB = ¢B. We can lower bound the probability that F
wins as follows:

Pr[WINg = true] = Pr[GB:CB A GUESSCIPH]

> Pr{aB=cCB]—Pr[GUEsSCIPH] . (7)
On the other hand
PrjacB=cB| = Pr[cB=cCB | WIN; = true| - Pr[WIN; = true]
+Pr[GB = CB | WIN; # true| - Pr[WIN; # true]
1 1
= 1-Pr[WIN; =true] + (5 - W) (1 = Pr[WIN; = true])
1 1 1 1

= Q—WH+(2+W>_1)‘P”WINIZ””‘*]' ®

Above the 1/(2v/%) — 1) represents the probability that I does not correctly decrypt the challenge
ciphertext but, unluckily for us, provides the plaintext CH;_¢p. From Equation (8) we get
2(2vel(k) 1) 1 1
PT[WIN[—true] = W . (PI‘[GB— CB] — 2+27JCZ(]€)_1>
2

Using Equation (7) and the definition of the advantage from Definition B.3 we get

Pr{WiN; =true] < 2:(Pr[WINg = true| + Pr[GuessCipu]) — 1+ W“gﬁ
— Advﬁ?%(k) +2-Pr[GuessCrpH | + 2”0%)4—1
SN IR a—
= AdvEB(k) + %

32

Adversary Icip(pkep) — Non-resetting CR1 attacker for CZD

Initialization:

(1) Cy <0 // Message counter for verifier //

(2) pick random string Rcom // for assimilated trapdoor commitment //

(3) p<— 0 J Number of active prover instances //

(4) (pkrpes skrpe) < TDC(keygen, k) // Keys for trapdoor commitment scheme //

Execute adversary I on input pk = (pkcrp, Pkrpe) and reply to its oracle queries as follows:

e When I makes query WakeNewProver // Activate a new prover instance
(1) p<—p+1; Pick a tape R, at random ; Return p

e When I makes query Send(prvmsg, i, MSG1|| - - - [|[MSGg;) with 0 <2j <5 and 1 <i<p
(1) If Cy # 0 then Return L
(2) If 25 =0 then Return start
(3) If 2j =2 then |/ MsSG; = start and MSGy is trapdoor commitment //
— MSG3 <« CID(cmt, skcip, €; R;) // Fetch commitment of CID-prover //
— Return MSGj
(4) If 2j =4 then |/ MSGy is opening of trapdoor commitment MSGy //
— parse MSGy as ¢||R
— If TDC(vf, pkrpe, MSGa, MSGy) = accept
— then MSGjs < CID(resp, skcip, MSCs||c; R;) /| Get response from CID-prover //
— else MSGj «— L
— Return MSGs

e When I makes query Send(vfmsg, MSG1]| - - - [[MSGg;_1) with 1 <25 —1 <5
(1) Cy «—Cv+2
(2) If 2j < Cy then Return 1 / Not allowed to reset the verifier ;/
(3) If 2j—1=1then // Start: compute dummy trapdoor commitment for 0v¢!(*) //
— MSGy « TDC(cmt, pkrpc, 0°F); Roon)
— Return MSGo
(4) If 2j—1 =3 then [Forward coM, get verifier’s challenge and adapt dummy commitment

/

— CHy « CID(chall, pkcp, MSG3)
— MSGyq <« TDC(fake, skTpc, Ovd(k)HRc()l\/[7 CHy)
— Return MSGy
(5) If 2j—1=5then / Adversary and we finish execution with verifier //
— forward MSGs||CHy ||MSG5 to verifier in CZD

Figure 15: Impersonater Icip attacking CZD in a non-resetting CR1 model, using as subroutine an
impersonator I attacking the protocol ZD of Figure 6 in the CR1 setting.

Above we upper bounded Pr[GUESSCIPH | by the probability of guessing the underlying plaintext,
using the fact that decryption is assumed unique (meaning ciphertexts of distinct plaintexts are always
distinct). This yields Equation (2) as desired.

33

D.3 Proof of Theorem 3.6

Figure 15 shows the adversary attacking the CID-identification protocol in the non-resetting CR1
model. This algorithm gets pkcp as input and tries to pass the verifier’s examination by running the
adversary I for ZD as a subroutine.

Algorithm Icp basically simulates the CR1-adversary I with the CID-protocol by assimilating all
additional steps of ZD. Specifically, Icip generates a random key pair (pktpc, skrpc) of the trapdoor
commitment scheme and starts the simulation of I on pkqp and pkppc. If this algorithm I commits
to some TDCOM in some instance with the prover then Icp calls the prover in CZD to obtain coM and
passes this commitment on to I. If I opens a commitment TDCOM then Icip checks the correctness; if
the opening is valid then forward the challenge to the prover and hand the answer to I. If the decom-
mitment is incorrect then return L to I without involving the prover. For a correct decommitment
Icip fetches the prover’s response for the challenge and hands it to 1.

When [finishes the phase with the prover and starts an execution with the verifier, Icip commits to
a dummy value 0*‘%). Then I sends a commitment to the verifier which Icip passes to the verifier in
CID to obtain a challenge CHy from the verifier. Exploiting the trapdoor property and knowledge of
skrpc, adversary Icp finds an appropriate opening for this challenge CHy, for the dummy commitment.
Note that this decommitment is identically distributed as if Icp would have committed to CHy right
away. Icmp gives this decommitment to I and returns the answer to the verifier in CZD.

In contrast to the prover in protocol ZD the prover in CZD uses random coins instead of a pseudo-
random function. The first step is to verify that pseudorandom values R; « PRF(eval, K, TDCOM)
instead of truly random R; do not help I too much. To this end, we recall the hybrid model of [11]
in which we replace the pseudorandom function by a random one. Namely, given protocol ZD in the
CR1 setting we denote by ZD®*P the identification scheme in which each prover instance, instead
of applying a pseudorandom function to TDCOM, evaluates a random function on this value, where
an independent function is selected for each prover incarnation. Although random functions are not
efficiently computable, they can be simulated by assigning each new argument an independent random
string, and by repeating previously given answers for the same queries. The next claim relates the
advantage the adversary I might gain in ZD compared to ZD"**"" to the pseudorandomness of PR.F:

Claim D.1 Let ZD be the identification protocol in Figure 6 and let vcl(-) a polynomially-bounded
function. Also, let PRF be a pseudorandom function family. If I is an adversary of time-complexity
t(-) and query-complexity ¢(-) attacking ZD in the CR1 setting then

AdvEET (k) < q(k) - Adv(S (k) + AdvERthe (k) - (9)

Proof: Given an adversary I we construct a distinguisher D for the pseudorandom function ensemble
PRF as follows. D essentially plays the role of the honest parties, i.e., the prover and verifier,
but is given oracle access to a sequence of functions f1,..., f,) which are either pseudorandom
or truly random. D generates a random key pair (pk,sk) < ZD(keygen, k) and starts to emulate
the attack. This is done by performing all steps of the prover’s incarnations and the verifier as
defined by the protocol, except for the step where some prover instance ¢ is supposed to compute
R; — PRF(eval,k, TDCOM). Instead, algorithm D replies by querying oracle f; about TbcoM and
continuing this prover’s simulation for random tape R;. The distinguisher outputs 1 if and only if the
adversary is successful.

Clearly, if f1,..., fyx) 18 a sequence of pseudorandom functions then D outputs 1 exactly if the
adversary breaks ZD. On the other hand, if the functions are truly random then D outputs 1 if and

34

only if the adversary breaks ZD"*"P. The running time of D is bounded by #(k) and the number of
queries is at most ¢(k). An hybrid argument now shows that this yields an algorithm distinguishing
a single pseudorandom function from PRF and a random one; the distinguishing advantage drops by
a factor ¢(k) at most (see [2]). |

Hence, if the adversary I never queries a prover copy for the same prefix twice, the hybrid scheme
corresponds to the setting where each prover incarnation uses an independent random tape, like
the prover instances in CZD. Because such double queries can be easily eliminated by table-lookup
techniques, we assume in the sequel for simplicity that I never sends the same message to the same
prover instance twice.

Next we bound the probability that I finds distinct openings to a commitment TDCOM sent to the
prover in ZD™" by the maximal probability Adv? P¢(k) of an algorithm finding a commitment with
ambiguous decommitments and running in time ¢(k). If this does not happen then I virtually mounts
a non-resetting CR1 attack on ZD""P and therefore Icip a corresponing attack on CZD.

Claim D.2 If] is an adversary of time-complexity #(-) and query-complexity ¢(-) attacking ZD"**"P
in the CR1 setting then for Icp attacking CZD as defined in Figure 15 we have

Adviinile (k) < Advi P¢(k) + AdviEE L (k) . (10)

Proof: Conditioning on the event UNAMBIGUITY that the impersonator I does not send TDCOM with
two valid decommitments to some prover incarnation, it is clear that I runs a non-resetting CR1 attack
only. In this case, adversary Icip wins whenever I wins. It therefore suffices to bound the probability
of event UNAMBIGUITY.

We claim that Pr { UNAMBIGUITY} is at most AthTDC(k:). This can be seen as follows. Given a public

key pkppc of the trapdoor commitment scheme we choose a pair (pkcp, skcmp) for the identification
protocol and run an attack of I on ZD®**" by impersonating the honest prover and verifier. If I outputs
a commitment TDCOM with distinct openings with respect to pktpc then we output this commitment
with the openings, too. Apparently, the probability that we find such ambiguous decommitments
equals the probability Pr [UNAMBIGUITY}, and the running time of our algorithm is bounded by

t(k). This completes the proof. |

Collecting the probabilities from Claims D.1 and D.2 yields the theorem.

35

